{"title":"'Big Data' in animal health research - opportunities and challenges.","authors":"Janet I MacInnes","doi":"10.1017/S1466252319000215","DOIUrl":null,"url":null,"abstract":"<p><p>Automated systems for high-input data collection and data storage have led to exponential growth in the availability of information. Such datasets and the tools applied to them have been referred to as 'big data'. Starting with a systematic review of the terms 'informatics, bioinformatics and big data' in animal health this special issue of AHRR illustrates some big-data applications with papers on how the use of various omics methods may be used to facilitate the development of improved diagnostics, therapeutics, and vaccines for foodborne pathogens in poultry and on how a better understanding of rumen microbiota could lead to improved feed absorption while minimizing methane production. Other papers in this issue cover the use of big data modeling in dairy cattle for more effective disease interventions and machine learning tools for livestock breeding. The final two reviews describe the use of big data in better vector-borne pathogen forecasts with canine seroprevalence maps and modeling approaches to understand the transmission of avian influenza virus. Although a lot of technical and ethical issues remain with the use of big data, these reviews illustrate the tremendous potential that big-data systems have to revolutionize animal health research.</p>","PeriodicalId":51313,"journal":{"name":"Animal Health Research Reviews","volume":"21 1","pages":"1-2"},"PeriodicalIF":4.3000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S1466252319000215","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Health Research Reviews","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S1466252319000215","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Automated systems for high-input data collection and data storage have led to exponential growth in the availability of information. Such datasets and the tools applied to them have been referred to as 'big data'. Starting with a systematic review of the terms 'informatics, bioinformatics and big data' in animal health this special issue of AHRR illustrates some big-data applications with papers on how the use of various omics methods may be used to facilitate the development of improved diagnostics, therapeutics, and vaccines for foodborne pathogens in poultry and on how a better understanding of rumen microbiota could lead to improved feed absorption while minimizing methane production. Other papers in this issue cover the use of big data modeling in dairy cattle for more effective disease interventions and machine learning tools for livestock breeding. The final two reviews describe the use of big data in better vector-borne pathogen forecasts with canine seroprevalence maps and modeling approaches to understand the transmission of avian influenza virus. Although a lot of technical and ethical issues remain with the use of big data, these reviews illustrate the tremendous potential that big-data systems have to revolutionize animal health research.
期刊介绍:
Animal Health Research Reviews provides an international forum for the publication of reviews and commentaries on all aspects of animal health. Papers include in-depth analyses and broader overviews of all facets of health and science in both domestic and wild animals. Major subject areas include physiology and pharmacology, parasitology, bacteriology, food and environmental safety, epidemiology and virology. The journal is of interest to researchers involved in animal health, parasitologists, food safety experts and academics interested in all aspects of animal production and welfare.