Quantum-limit Chern topological magnetism in TbMn6Sn6

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2020-07-22 DOI:10.1038/s41586-020-2482-7
Jia-Xin Yin, Wenlong Ma, Tyler A. Cochran, Xitong Xu, Songtian S. Zhang, Hung-Ju Tien, Nana Shumiya, Guangming Cheng, Kun Jiang, Biao Lian, Zhida Song, Guoqing Chang, Ilya Belopolski, Daniel Multer, Maksim Litskevich, Zi-Jia Cheng, Xian P. Yang, Bianca Swidler, Huibin Zhou, Hsin Lin, Titus Neupert, Ziqiang Wang, Nan Yao, Tay-Rong Chang, Shuang Jia, M. Zahid Hasan
{"title":"Quantum-limit Chern topological magnetism in TbMn6Sn6","authors":"Jia-Xin Yin, Wenlong Ma, Tyler A. Cochran, Xitong Xu, Songtian S. Zhang, Hung-Ju Tien, Nana Shumiya, Guangming Cheng, Kun Jiang, Biao Lian, Zhida Song, Guoqing Chang, Ilya Belopolski, Daniel Multer, Maksim Litskevich, Zi-Jia Cheng, Xian P. Yang, Bianca Swidler, Huibin Zhou, Hsin Lin, Titus Neupert, Ziqiang Wang, Nan Yao, Tay-Rong Chang, Shuang Jia, M. Zahid Hasan","doi":"10.1038/s41586-020-2482-7","DOIUrl":null,"url":null,"abstract":"The quantum-level interplay between geometry, topology and correlation is at the forefront of fundamental physics1–15. Kagome magnets are predicted to support intrinsic Chern quantum phases owing to their unusual lattice geometry and breaking of time-reversal symmetry14,15. However, quantum materials hosting ideal spin–orbit-coupled kagome lattices with strong out-of-plane magnetization are lacking16–21. Here, using scanning tunnelling microscopy, we identify a new topological kagome magnet, TbMn6Sn6, that is close to satisfying these criteria. We visualize its effectively defect-free, purely manganese-based ferromagnetic kagome lattice with atomic resolution. Remarkably, its electronic state shows distinct Landau quantization on application of a magnetic field, and the quantized Landau fan structure features spin-polarized Dirac dispersion with a large Chern gap. We further demonstrate the bulk–boundary correspondence between the Chern gap and the topological edge state, as well as the Berry curvature field correspondence of Chern gapped Dirac fermions. Our results point to the realization of a quantum-limit Chern phase in TbMn6Sn6, and may enable the observation of topological quantum phenomena in the RMn6Sn6 (where R is a rare earth element) family with a variety of magnetic structures. Our visualization of the magnetic bulk–boundary–Berry correspondence covering real space and momentum space demonstrates a proof-of-principle method for revealing topological magnets. Scanning tunnelling microscopy is used to reveal a new topological kagome magnet with an intrinsic Chern quantum phase, which shows a distinct Landau fan structure with a large Chern gap.","PeriodicalId":18787,"journal":{"name":"Nature","volume":"583 7817","pages":"533-536"},"PeriodicalIF":50.5000,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41586-020-2482-7","citationCount":"177","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-020-2482-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 177

Abstract

The quantum-level interplay between geometry, topology and correlation is at the forefront of fundamental physics1–15. Kagome magnets are predicted to support intrinsic Chern quantum phases owing to their unusual lattice geometry and breaking of time-reversal symmetry14,15. However, quantum materials hosting ideal spin–orbit-coupled kagome lattices with strong out-of-plane magnetization are lacking16–21. Here, using scanning tunnelling microscopy, we identify a new topological kagome magnet, TbMn6Sn6, that is close to satisfying these criteria. We visualize its effectively defect-free, purely manganese-based ferromagnetic kagome lattice with atomic resolution. Remarkably, its electronic state shows distinct Landau quantization on application of a magnetic field, and the quantized Landau fan structure features spin-polarized Dirac dispersion with a large Chern gap. We further demonstrate the bulk–boundary correspondence between the Chern gap and the topological edge state, as well as the Berry curvature field correspondence of Chern gapped Dirac fermions. Our results point to the realization of a quantum-limit Chern phase in TbMn6Sn6, and may enable the observation of topological quantum phenomena in the RMn6Sn6 (where R is a rare earth element) family with a variety of magnetic structures. Our visualization of the magnetic bulk–boundary–Berry correspondence covering real space and momentum space demonstrates a proof-of-principle method for revealing topological magnets. Scanning tunnelling microscopy is used to reveal a new topological kagome magnet with an intrinsic Chern quantum phase, which shows a distinct Landau fan structure with a large Chern gap.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TbMn6Sn6 中的量子极限切尔诺拓扑磁性
几何、拓扑和相关性之间的量子级相互作用是基础物理学的前沿问题1,15。据预测,卡戈米磁体由于其不寻常的晶格几何形状和时间反转对称性的打破,可支持本征的切尔量子相14,15。然而,目前还缺乏承载理想自旋轨道耦合卡戈米晶格和强平面外磁化的量子材料16-21。在这里,我们利用扫描隧道显微镜,发现了一种接近满足这些标准的新型拓扑卡戈米磁体--锑锰6硒6(TbMn6Sn6)。我们以原子分辨率观察到了它有效的无缺陷、纯锰基铁磁性 kagome 晶格。值得注意的是,它的电子态在施加磁场时显示出明显的朗道量子化,量子化的朗道扇形结构具有自旋极化的狄拉克色散和较大的切尔诺缺口。我们进一步证明了切尔恩间隙与拓扑边缘态之间的体界对应关系,以及切尔恩间隙狄拉克费米子的贝里曲率场对应关系。我们的研究结果表明在 TbMn6Sn6 中实现了量子极限切尔相,并有可能在具有各种磁结构的 RMn6Sn6(其中 R 是一种稀土元素)家族中观察到拓扑量子现象。我们对覆盖实空间和动量空间的磁体-边界-贝里对应关系的可视化展示了一种揭示拓扑磁体的原理验证方法。我们利用扫描隧道显微镜揭示了一种具有内在切尔量子相的新型拓扑卡戈米磁体,它显示出明显的朗道扇形结构和较大的切尔隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Pioneering CERN scheme will pay publishers more if they hit open-science targets What went wrong at 23andMe? Why the genetic-data giant risks collapse Microplastics block blood flow in the brain, mice study reveals US scientist falsely accused of hiding ties to China sues university that fired him The new science of menopause: these emerging therapies could change women’s health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1