The multi-functional eyes absent proteins.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Critical Reviews in Biochemistry and Molecular Biology Pub Date : 2020-08-01 Epub Date: 2020-07-29 DOI:10.1080/10409238.2020.1796922
Rashmi S Hegde, Kaushik Roychoudhury, Ram Naresh Pandey
{"title":"The multi-functional eyes absent proteins.","authors":"Rashmi S Hegde, Kaushik Roychoudhury, Ram Naresh Pandey","doi":"10.1080/10409238.2020.1796922","DOIUrl":null,"url":null,"abstract":"<p><p>The Eyes Absent (EYA) proteins are the only known instance of a single polypeptide housing the following three separable biochemical activities: tyrosine phosphatase, threonine phosphatase, and transactivation. This uniquely positions the EYAs to participate in both transcriptional regulation and signal transduction pathways. But it also complicates the assignment of biological roles to individual biochemical activities through standard loss-of-function experiments. Nevertheless, there is an emerging literature linking developmental and pathological functions with the various EYA activities, and a growing list of disease states that might benefit from EYA-targeted therapeutics. There also remain multiple unresolved issues with significant implications for our understanding of how the EYAs might impact such ubiquitous signaling cascades as the MYC and Notch pathways. This review will describe the unique juxtaposition of biochemical activities in the EYAs, their interaction with signaling pathways and cellular processes, emerging evidence of roles in disease states, and the feasibility of therapeutic targeting of individual EYA activities. We will focus on the phosphatase activities of the vertebrate EYA proteins and will examine the current state of knowledge regarding: • substrates and signaling pathways affected by the EYA tyrosine phosphatase activity; • modes of regulation of the EYA tyrosine phosphatase activity; • signaling pathways that implicate the threonine phosphatase activity of the EYAs including a potential interaction with PP2A-B55α; • the interplay between the two phosphatase activities and the transactivation function of the EYAs; • disease states associated with the EYAs and the current state of development of EYA-targeted therapeutics.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 4","pages":"372-385"},"PeriodicalIF":6.2000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727457/pdf/nihms-1648379.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2020.1796922","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Eyes Absent (EYA) proteins are the only known instance of a single polypeptide housing the following three separable biochemical activities: tyrosine phosphatase, threonine phosphatase, and transactivation. This uniquely positions the EYAs to participate in both transcriptional regulation and signal transduction pathways. But it also complicates the assignment of biological roles to individual biochemical activities through standard loss-of-function experiments. Nevertheless, there is an emerging literature linking developmental and pathological functions with the various EYA activities, and a growing list of disease states that might benefit from EYA-targeted therapeutics. There also remain multiple unresolved issues with significant implications for our understanding of how the EYAs might impact such ubiquitous signaling cascades as the MYC and Notch pathways. This review will describe the unique juxtaposition of biochemical activities in the EYAs, their interaction with signaling pathways and cellular processes, emerging evidence of roles in disease states, and the feasibility of therapeutic targeting of individual EYA activities. We will focus on the phosphatase activities of the vertebrate EYA proteins and will examine the current state of knowledge regarding: • substrates and signaling pathways affected by the EYA tyrosine phosphatase activity; • modes of regulation of the EYA tyrosine phosphatase activity; • signaling pathways that implicate the threonine phosphatase activity of the EYAs including a potential interaction with PP2A-B55α; • the interplay between the two phosphatase activities and the transactivation function of the EYAs; • disease states associated with the EYAs and the current state of development of EYA-targeted therapeutics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
没有蛋白质的多功能眼睛。
Eyes Absent(EYA)蛋白是唯一已知的单个多肽具有以下三种可分离生化活性的实例:酪氨酸磷酸酶、苏氨酸磷酸酶和转录激活。这使 EYAs 能够独特地参与转录调控和信号转导途径。但这也使通过标准功能缺失实验来确定单个生化活动的生物学作用变得更加复杂。尽管如此,有越来越多的文献将发育和病理功能与 EYA 的各种活动联系起来,并且有越来越多的疾病可能受益于 EYA 靶向疗法。此外,还有许多问题尚未解决,这对我们了解 EYA 如何影响 MYC 和 Notch 通路等无处不在的信号级联具有重要影响。本综述将介绍 EYA 中并列的独特生化活性、它们与信号通路和细胞过程的相互作用、在疾病状态中发挥作用的新证据以及针对单个 EYA 活性进行治疗的可行性。我们将重点研究脊椎动物 EYA 蛋白的磷酸酶活性,并将考察有关以下方面的知识现状:- 受EYA酪氨酸磷酸酶活性影响的底物和信号传导途径; - EYA酪氨酸磷酸酶活性的调控模式; - 与EYA苏氨酸磷酸酶活性有关的信号传导途径,包括与PP2A-B55α的潜在相互作用; - EYA的两种磷酸酶活性和转录激活功能之间的相互作用; - 与EYA有关的疾病状态以及EYA靶向疗法的开发现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.90
自引率
0.00%
发文量
6
期刊介绍: As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties. Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology. Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.
期刊最新文献
The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. Evolution, classification, and mechanisms of transport, activity regulation, and substrate specificity of ZIP metal transporters. Methanogens and what they tell us about how life might survive on Mars. Exercise training and changes in skeletal muscle mitochondrial proteins: from blots to "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1