首页 > 最新文献

Critical Reviews in Biochemistry and Molecular Biology最新文献

英文 中文
Discovery, functional characterization, and structural studies of the NRPS-independent siderophore synthetases.
IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-03-14 DOI: 10.1080/10409238.2025.2476476
Ketan D Patel, Mercedes B Fisk, Andrew M Gulick

To adapt to low-iron environments, many bacteria produce siderophores, low molecular weight iron chelators that are secreted into the environment where they bind ferric iron. The production of siderophore uptake systems then allows retrieval of the iron-complexed siderophore into the cell, where the metal ion can be used for structural and catalytic roles in many proteins. While many siderophores are produced by the activity of a family of large modular nonribosomal peptide synthetase (NRPS) enzymes, a second class of siderophores are produced by an alternate pathway. These so-called NRPS-independent siderophores (NIS) are biosynthesized through a shared catalytic step that is performed by an NIS synthetase. These enzymes catalyze the formation of an amide linkage between a carboxylate and an amine or, more rarely, form an ester with a hydroxyl substrate. Here we describe the discovery and biochemical studies of diverse NIS synthetases from different siderophore pathways to provide insight into their substrate specificity and catalytic mechanism. The structures of a small number of family members are additionally described that correlates the functional work with the enzyme structure. While the field has come a long way since it was described as a "long-overlooked" family in 2009, there remains much to discover in this large and important enzyme family.

{"title":"Discovery, functional characterization, and structural studies of the NRPS-independent siderophore synthetases.","authors":"Ketan D Patel, Mercedes B Fisk, Andrew M Gulick","doi":"10.1080/10409238.2025.2476476","DOIUrl":"10.1080/10409238.2025.2476476","url":null,"abstract":"<p><p>To adapt to low-iron environments, many bacteria produce siderophores, low molecular weight iron chelators that are secreted into the environment where they bind ferric iron. The production of siderophore uptake systems then allows retrieval of the iron-complexed siderophore into the cell, where the metal ion can be used for structural and catalytic roles in many proteins. While many siderophores are produced by the activity of a family of large modular nonribosomal peptide synthetase (NRPS) enzymes, a second class of siderophores are produced by an alternate pathway. These so-called NRPS-independent siderophores (NIS) are biosynthesized through a shared catalytic step that is performed by an NIS synthetase. These enzymes catalyze the formation of an amide linkage between a carboxylate and an amine or, more rarely, form an ester with a hydroxyl substrate. Here we describe the discovery and biochemical studies of diverse NIS synthetases from different siderophore pathways to provide insight into their substrate specificity and catalytic mechanism. The structures of a small number of family members are additionally described that correlates the functional work with the enzyme structure. While the field has come a long way since it was described as a \"long-overlooked\" family in 2009, there remains much to discover in this large and important enzyme family.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"1-25"},"PeriodicalIF":6.2,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143623528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalase-peroxidase (KatG): a potential frontier in tuberculosis drug development.
IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-27 DOI: 10.1080/10409238.2025.2470630
Aimin Liu

Mycobacterium tuberculosis (Mtb) depends on the bifunctional enzyme catalase-peroxidase (KatG) for survival within the host. KatG exhibits both catalase and peroxidase activities, serving distinct yet critical roles. While its peroxidase activity is essential for activating the frontline tuberculosis drug isoniazid, its catalase activity protects Mtb from oxidative stress. This bifunctional enzyme is equipped with a unique, protein-derived cofactor, methionine-tyrosine-tryptophan (MYW), which enables catalase activity to efficiently disproportionate hydrogen peroxide in phagocytes. Recent studies reveal that the MYW cofactor naturally exists in a hydroperoxylated form (MYW-OOH) when cell cultures are grown under ambient conditions. New findings highlight a dynamic regulation of KatG activity, wherein the modification of the protein cofactor is removable-from MYW-OOH to MYW-at body temperature or in the presence of micromolar concentrations of hydrogen peroxide. This reversible modification modulates KatG's dual activities: MYW-OOH inhibits catalase activity while enhancing peroxidase activity, demonstrating the chemical accessibility of the cofactor. Such duality positions KatG as a unique target for tuberculosis drug development. Therapeutic strategies that exploit cofactor modification could hold promise, particularly against drug-resistant strains with impaired peroxidase activity. By selectively inhibiting catalase activity, these approaches would render Mtb more vulnerable to oxidative stress while enhancing isoniazid activation-a double-edged strategy for combating tuberculosis.

{"title":"Catalase-peroxidase (KatG): a potential frontier in tuberculosis drug development.","authors":"Aimin Liu","doi":"10.1080/10409238.2025.2470630","DOIUrl":"https://doi.org/10.1080/10409238.2025.2470630","url":null,"abstract":"<p><p><i>Mycobacterium tuberculosis</i> (Mtb) depends on the bifunctional enzyme catalase-peroxidase (KatG) for survival within the host. KatG exhibits both catalase and peroxidase activities, serving distinct yet critical roles. While its peroxidase activity is essential for activating the frontline tuberculosis drug isoniazid, its catalase activity protects Mtb from oxidative stress. This bifunctional enzyme is equipped with a unique, protein-derived cofactor, methionine-tyrosine-tryptophan (MYW), which enables catalase activity to efficiently disproportionate hydrogen peroxide in phagocytes. Recent studies reveal that the MYW cofactor naturally exists in a hydroperoxylated form (MYW-OOH) when cell cultures are grown under ambient conditions. New findings highlight a dynamic regulation of KatG activity, wherein the modification of the protein cofactor is removable-from MYW-OOH to MYW-at body temperature or in the presence of micromolar concentrations of hydrogen peroxide. This reversible modification modulates KatG's dual activities: MYW-OOH inhibits catalase activity while enhancing peroxidase activity, demonstrating the chemical accessibility of the cofactor. Such duality positions KatG as a unique target for tuberculosis drug development. Therapeutic strategies that exploit cofactor modification could hold promise, particularly against drug-resistant strains with impaired peroxidase activity. By selectively inhibiting catalase activity, these approaches would render Mtb more vulnerable to oxidative stress while enhancing isoniazid activation-a double-edged strategy for combating tuberculosis.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"1-13"},"PeriodicalIF":6.2,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The common chemical logic of 'bridged' peroxo species in mononuclear non-heme iron systems.
IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-29 DOI: 10.1080/10409238.2025.2455084
Kirklin L McWhorter, Vatsal Purohit, Joseph A Ambarian, Riddhi Jhunjhunwala, Katherine M Davis

Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence via the formation of peroxo species bridging metal and substrate. Aromatic amino acid hydroxylases and 2-oxoglutarate (2OG)-dependent enzymes, for example, form bridged acyl- or alkylperoxo intermediates en route to highly oxidizing ferryl species, while catechol dioxygenases utilize such 'bridged' peroxos directly. Analogous acylperoxoiron intermediates have also been demonstrated to precede a perferryl oxidant in biomimetic systems. Herein, we synthesize the results of structural, spectroscopic and computational studies on these systems to gain insight into the shared chemical logic that drives iron-peracid formation and reactivity. In all cases, reactions are tuned via the electron-donating properties of coordinating ligands. Second-sphere residues have also been demonstrated to modulate the orientation of the bridge, thereby influencing reaction outcomes. The effect of carboxylic acid addition to relevant biomimetic catalyst reactions further underscores these fundamental chemical principles. Altogether, we provide a comprehensive analysis of the cross-cutting mechanisms that guide peroxo formation and subsequent oxidative chemistry performed by non-heme mononuclear iron catalysts.

{"title":"The common chemical logic of 'bridged' peroxo species in mononuclear non-heme iron systems.","authors":"Kirklin L McWhorter, Vatsal Purohit, Joseph A Ambarian, Riddhi Jhunjhunwala, Katherine M Davis","doi":"10.1080/10409238.2025.2455084","DOIUrl":"https://doi.org/10.1080/10409238.2025.2455084","url":null,"abstract":"<p><p>Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence <i>via</i> the formation of peroxo species bridging metal and substrate. Aromatic amino acid hydroxylases and 2-oxoglutarate (2OG)-dependent enzymes, for example, form bridged acyl- or alkylperoxo intermediates en route to highly oxidizing ferryl species, while catechol dioxygenases utilize such 'bridged' peroxos directly. Analogous acylperoxoiron intermediates have also been demonstrated to precede a perferryl oxidant in biomimetic systems. Herein, we synthesize the results of structural, spectroscopic and computational studies on these systems to gain insight into the shared chemical logic that drives iron-peracid formation and reactivity. In all cases, reactions are tuned <i>via</i> the electron-donating properties of coordinating ligands. Second-sphere residues have also been demonstrated to modulate the orientation of the bridge, thereby influencing reaction outcomes. The effect of carboxylic acid addition to relevant biomimetic catalyst reactions further underscores these fundamental chemical principles. Altogether, we provide a comprehensive analysis of the cross-cutting mechanisms that guide peroxo formation and subsequent oxidative chemistry performed by non-heme mononuclear iron catalysts.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"1-16"},"PeriodicalIF":6.2,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143058274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A structural view of nickel-pincer nucleotide cofactor-related biochemistry. 钳镍核苷酸辅因子相关生物化学的结构观点。
IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-19 DOI: 10.1080/10409238.2025.2451443
Santhosh Gatreddi, Shramana Chatterjee, Aiko Turmo, Jian Hu, Robert P Hausinger

The nickel-pincer nucleotide (NPN) is an organometallic cofactor that was first discovered in lactate racemase from Lactiplantibacillus plantarum. In this review, we provide an overview on the structure-function relationships of enzymes that utilize or are involved in the biosynthesis of the NPN cofactor. Recent structural advances have greatly extended our understanding of the biological role of the NPN cofactor in a diverse family of 2-hydroxyacid racemases and epimerases. Moreover, structural studies of the accessory proteins LarB (a combined carboxylase/hydrolase), two distinct forms of LarE (an ATP-dependent sulfur transferase), and LarC (a CTP-dependent nickel insertase) have elucidated key features in the biosynthetic pathway for the NPN cofactor. Finally, we discuss the potential of future structural investigations to uncover additional enzymes that synthesize and use the NPN cofactor to catalyze new reactions.

镍钳核苷酸(NPN)是一种有机金属辅助因子,最早发现于植物乳杆菌的乳酸消旋酶中。本文综述了利用或参与NPN辅助因子生物合成的酶的结构-功能关系。最近的结构进展极大地扩展了我们对NPN辅助因子在2-羟基酸外消旋酶和外缩酶不同家族中的生物学作用的理解。此外,对辅助蛋白LarB(一种组合羧化酶/水解酶)、两种不同形式的LarE(一种依赖atp的硫转移酶)和LarC(一种依赖ctp的镍插入酶)的结构研究已经阐明了NPN辅助因子生物合成途径的关键特征。最后,我们讨论了未来结构研究的潜力,以发现合成和使用NPN辅助因子催化新反应的其他酶。
{"title":"A structural view of nickel-pincer nucleotide cofactor-related biochemistry.","authors":"Santhosh Gatreddi, Shramana Chatterjee, Aiko Turmo, Jian Hu, Robert P Hausinger","doi":"10.1080/10409238.2025.2451443","DOIUrl":"10.1080/10409238.2025.2451443","url":null,"abstract":"<p><p>The nickel-pincer nucleotide (NPN) is an organometallic cofactor that was first discovered in lactate racemase from <i>Lactiplantibacillus plantarum</i>. In this review, we provide an overview on the structure-function relationships of enzymes that utilize or are involved in the biosynthesis of the NPN cofactor. Recent structural advances have greatly extended our understanding of the biological role of the NPN cofactor in a diverse family of 2-hydroxyacid racemases and epimerases. Moreover, structural studies of the accessory proteins LarB (a combined carboxylase/hydrolase), two distinct forms of LarE (an ATP-dependent sulfur transferase), and LarC (a CTP-dependent nickel insertase) have elucidated key features in the biosynthetic pathway for the NPN cofactor. Finally, we discuss the potential of future structural investigations to uncover additional enzymes that synthesize and use the NPN cofactor to catalyze new reactions.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"1-16"},"PeriodicalIF":6.2,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structures, mechanisms, and kinetic advantages of the SgrAI filament forming mechanism. SgrAI长丝成形机理的结构、机理及动力学优势。
IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-19 DOI: 10.1080/10409238.2024.2440315
Nancy C Horton, Dmitry Lyumkis

This review documents investigations leading to the unprecedented discovery of filamentation as a mode of enzyme regulation in the type II restriction endonuclease SgrAI. Filamentation is defined here as linear or helical polymerization of a single enzyme as occurs for SgrAI, and has now been shown to occur in many other enzyme systems, including conserved metabolic enzymes. In the case of SgrAI, filamentation activates the DNA cleavage rate by up to 1000-fold and also alters the enzyme's DNA sequence specificity. The investigations began with the observation that SgrAI cleaves two types of recognition sequences, primary and secondary, but cleaves the secondary sequences only when present on the same DNA as at least one primary. DNA cleavage rate measurements showed how the primary sequence is both a substrate and an allosteric effector of SgrAI. Biophysical measurements indicated that the activated form of SgrAI, stimulated by binding to the primary sequence, consisted of varied numbers of the SgrAI bound to DNA. Structural studies revealed the activated state of SgrAI as a left-handed helical filament which stabilizes an altered enzyme conformation, which binds a second divalent cation in the active site. Efforts to determine the mechanism of DNA sequence specificity alteration are ongoing and current models are discussed. Finally, global kinetic modeling of the filament mediated DNA cleavage reaction and simulations of in vivo activity suggest that the filament mechanism evolved to rapidly cleave invading DNA while protecting the Streptomyces host genome.

这篇综述文件调查导致前所未有的发现,在II型限制性内切酶SgrAI中,成丝是一种酶调节模式。丝化在这里被定义为单个酶的线性或螺旋聚合,就像SgrAI发生的那样,现在已经证明在许多其他酶系统中也会发生,包括保守的代谢酶。在SgrAI的情况下,成丝激活DNA切割率高达1000倍,也改变了酶的DNA序列特异性。研究开始于观察到SgrAI切割两种类型的识别序列,一级和二级序列,但只有在与至少一个一级序列出现在相同的DNA上时才会切割二级序列。DNA切割速率测量表明,第一序列既是SgrAI的底物,也是其变构效应。生物物理测量表明,SgrAI的激活形式是由与DNA结合的不同数量的SgrAI组成的。结构研究表明SgrAI的激活状态为左旋螺旋状丝,它稳定了改变的酶构象,在活性位点结合第二个二价阳离子。努力确定DNA序列特异性改变的机制正在进行中,目前的模型进行了讨论。最后,对丝介导的DNA裂解反应的全局动力学建模和体内活性模拟表明,丝的进化机制可以在保护链霉菌宿主基因组的同时快速裂解入侵DNA。
{"title":"Structures, mechanisms, and kinetic advantages of the SgrAI filament forming mechanism.","authors":"Nancy C Horton, Dmitry Lyumkis","doi":"10.1080/10409238.2024.2440315","DOIUrl":"https://doi.org/10.1080/10409238.2024.2440315","url":null,"abstract":"<p><p>This review documents investigations leading to the unprecedented discovery of filamentation as a mode of enzyme regulation in the type II restriction endonuclease SgrAI. Filamentation is defined here as linear or helical polymerization of a single enzyme as occurs for SgrAI, and has now been shown to occur in many other enzyme systems, including conserved metabolic enzymes. In the case of SgrAI, filamentation activates the DNA cleavage rate by up to 1000-fold and also alters the enzyme's DNA sequence specificity. The investigations began with the observation that SgrAI cleaves two types of recognition sequences, primary and secondary, but cleaves the secondary sequences only when present on the same DNA as at least one primary. DNA cleavage rate measurements showed how the primary sequence is both a substrate and an allosteric effector of SgrAI. Biophysical measurements indicated that the activated form of SgrAI, stimulated by binding to the primary sequence, consisted of varied numbers of the SgrAI bound to DNA. Structural studies revealed the activated state of SgrAI as a left-handed helical filament which stabilizes an altered enzyme conformation, which binds a second divalent cation in the active site. Efforts to determine the mechanism of DNA sequence specificity alteration are ongoing and current models are discussed. Finally, global kinetic modeling of the filament mediated DNA cleavage reaction and simulations of <i>in vivo</i> activity suggest that the filament mechanism evolved to rapidly cleave invading DNA while protecting the <i>Streptomyces</i> host genome.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"1-39"},"PeriodicalIF":6.2,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142851922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. RNA 聚合酶 II 的一般转录因子 (GTFs) 及其在植物发育和胁迫反应中的作用。
IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-10-03 DOI: 10.1080/10409238.2024.2408562
Shivam Sharma, Sanjay Kapoor, Athar Ansari, Akhilesh Kumar Tyagi

In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.

在真核生物中,一般转录因子(GTFs)能将 RNA 聚合酶 II(RNA Pol II)招募到核心启动子上,从而促进转录的启动。对哺乳动物和酵母的广泛研究揭示了它们在基础转录和各种生物过程中的重要作用。与哺乳动物和酵母不同,植物 GTFs 具有显著的变异性和灵活性。这是因为植物 GTFs 和 GTF 亚基通常由多基因家族编码,从而在细胞和生物水平上给转录调控带来了复杂性。本综述深入探讨了一般转录机制、GTF 的组成及其细胞功能。它进一步强调了与 RNA Pol II 相关的 GTFs 在植物发育和胁迫响应中的参与。研究表明,GTFs 是特定发育过程中基因表达的重要调控因子,有助于增强植物抵御不利环境条件的能力。它们的功能可能是直接的,也可能是通过其辅助因子介导的。GTFs 在控制基因表达从而影响特定性状方面的多功能性增加了植物系统固有的复杂性。
{"title":"The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses.","authors":"Shivam Sharma, Sanjay Kapoor, Athar Ansari, Akhilesh Kumar Tyagi","doi":"10.1080/10409238.2024.2408562","DOIUrl":"10.1080/10409238.2024.2408562","url":null,"abstract":"<p><p>In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"267-309"},"PeriodicalIF":6.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methanogens and what they tell us about how life might survive on Mars. 甲烷菌及其对火星生命生存方式的启示。
IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-11-03 DOI: 10.1080/10409238.2024.2418639
Chellapandi Paulchamy, Sreekutty Vakkattuthundi Premji, Saranya Shanmugam

Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.

太空探索和研究正在揭示地球生命在外太空生存的潜力,以及在星际转移过程中影响生命的环境因素。火星大气中存在甲烷,这表明火星上可能存在现存或已灭绝的甲烷菌。了解甲烷菌如何在太空暴露条件下生存和适应,对于了解地外生命的影响至关重要。在本文中,我们将讨论甲烷菌作为在模拟火星环境中获取能量转换器和生产甲烷的模式生物。我们还探讨了细胞组成和生长维持的化学进化,以支持在地外环境中的生存。在生理条件下,细胞成分的化学组成受到中性选择压力,以提高细胞存活率并降低生长速度。能量限制是甲烷菌大分子聚合、生长维持和生存能力的进化驱动力。在火星环境中生长的甲烷菌可能会在系统尺度上表现出代谢功能和基因表达的全面改变。空间系统生物学方法将进一步阐明分子生存机制和对恶劣外太空环境的适应性。因此,确定一个基因稳定的甲烷菌群落对于利用废物循环生产生物甲烷以实现可持续的太空生命支持功能至关重要。
{"title":"Methanogens and what they tell us about how life might survive on Mars.","authors":"Chellapandi Paulchamy, Sreekutty Vakkattuthundi Premji, Saranya Shanmugam","doi":"10.1080/10409238.2024.2418639","DOIUrl":"10.1080/10409238.2024.2418639","url":null,"abstract":"<p><p>Space exploration and research are uncovering the potential for terrestrial life to survive in outer space, as well as the environmental factors that affect life during interplanetary transfer. The presence of methane in the Martian atmosphere suggests the possibility of methanogens, either extant or extinct, on Mars. Understanding how methanogens survive and adapt under space-exposed conditions is crucial for understanding the implications of extraterrestrial life. In this article, we discuss methanogens as model organisms for obtaining energy transducers and producing methane in a simulated Martian environment. We also explore the chemical evolution of cellular composition and growth maintenance to support survival in extraterrestrial environments. Neutral selective pressure is imposed on the chemical composition of cellular components to increase cell survival and reduce growth under physiological conditions. Energy limitation is an evolutionary driver of macromolecular polymerization, growth maintenance, and survival fitness of methanogens. Methanogens grown in a Martian environment may exhibit global alterations in their metabolic function and gene expression at the system scale. A space systems biology approach would further elucidate molecular survival mechanisms and adaptation to a drastic outer space environment. Therefore, identifying a genetically stable methanogenic community is essential for biomethane production from waste recycling to achieve sustainable space-life support functions.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"337-362"},"PeriodicalIF":6.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. 结核分枝杆菌逃避免疫的机制:T7SS 和细胞壁脂质对宿主防御的影响。
IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-10-08 DOI: 10.1080/10409238.2024.2411264
Asrar Ahmad Malik, Mohd Shariq, Javaid Ahmad Sheikh, Udyeshita Jaiswal, Haleema Fayaz, Gauri Shrivastava, Nasreen Z Ehtesham, Seyed E Hasnain

Mycobacterium tuberculosis (M. tb) is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. M. tb employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive. It utilizes the early secretory antigenic target (ESAT6) secretion system 1 (ESX-1) type VII secretion system (T7SS) and cell wall lipids to disrupt phagosomal integrity, inhibiting phagosome maturation, and fusion with lysosomes. Although host cells activate mechanisms such as ubiquitin (Ub), Ub-ligase, and cyclic GMP-AMP synthase-stimulator of interferon genes 1 (CGAS-STING1)-mediated autophagy to inhibit M. tb survival within macrophages, the pathogen counteracts these defenses with its own virulence factors, thereby inhibiting autophagy and dampening host-directed responses. T7SSs are critical for transporting proteins across the complex mycobacterial cell envelope, performing essential functions, including metabolite uptake, immune evasion, and conjugation. T7SS substrates fall into two main families: ESAT-6 system proteins, which are found in both Firmicutes and Actinobacteria, and proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) proteins, which are unique to mycobacteria. Recent studies have highlighted the significance of T7SSs in mycobacterial growth, virulence, and pathogenesis. Understanding the mechanisms governing T7SSs could pave the way for novel therapeutic strategies to combat mycobacterial diseases, including tuberculosis (TB).

结核分枝杆菌(M. tb)是最成功的人类病原体之一,可引起严重而广泛的传染病。耐多药(MDR)菌株的频繁出现加剧了这一公共卫生危机,尤其是在欠发达地区。结核杆菌利用一系列复杂的毒力因子来破坏宿主的先天性和适应性免疫反应。它利用早期分泌抗原靶标(ESAT6)分泌系统 1(ESX-1)VII 型分泌系统(T7SS)和细胞壁脂质破坏吞噬体的完整性,抑制吞噬体的成熟以及与溶酶体的融合。虽然宿主细胞会激活泛素(Ub)、Ub 连接酶和环 GMP-AMP 合成酶-干扰素基因 1(CGAS-STING1)介导的自噬等机制来抑制 M. tb 在巨噬细胞内的存活,但病原体会用自身的毒力因子来抵消这些防御措施,从而抑制自噬并抑制宿主定向反应。T7SS 对于在复杂的分枝杆菌细胞包膜上转运蛋白质至关重要,可发挥重要功能,包括代谢物吸收、免疫逃避和连接。T7SS 底物分为两大类:ESAT-6 系统蛋白存在于固氮菌和放线菌中,而脯氨酸-谷氨酸(PE)和脯氨酸-脯氨酸-谷氨酸(PPE)蛋白则是分枝杆菌所特有的。最近的研究强调了 T7SS 在分枝杆菌生长、毒力和致病过程中的重要作用。了解 T7SSs 的作用机制可为制定新型治疗策略以防治包括结核病在内的分枝杆菌疾病铺平道路。
{"title":"Mechanisms of immune evasion by <i>Mycobacterium tuberculosis</i>: the impact of T7SS and cell wall lipids on host defenses.","authors":"Asrar Ahmad Malik, Mohd Shariq, Javaid Ahmad Sheikh, Udyeshita Jaiswal, Haleema Fayaz, Gauri Shrivastava, Nasreen Z Ehtesham, Seyed E Hasnain","doi":"10.1080/10409238.2024.2411264","DOIUrl":"10.1080/10409238.2024.2411264","url":null,"abstract":"<p><p><i>Mycobacterium tuberculosis</i> (<i>M. tb</i>) is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. <i>M. tb</i> employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive. It utilizes the early secretory antigenic target (ESAT6) secretion system 1 (ESX-1) type VII secretion system (T7SS) and cell wall lipids to disrupt phagosomal integrity, inhibiting phagosome maturation, and fusion with lysosomes. Although host cells activate mechanisms such as ubiquitin (Ub), Ub-ligase, and cyclic GMP-AMP synthase-stimulator of interferon genes 1 (CGAS-STING1)-mediated autophagy to inhibit <i>M. tb</i> survival within macrophages, the pathogen counteracts these defenses with its own virulence factors, thereby inhibiting autophagy and dampening host-directed responses. T7SSs are critical for transporting proteins across the complex mycobacterial cell envelope, performing essential functions, including metabolite uptake, immune evasion, and conjugation. T7SS substrates fall into two main families: ESAT-6 system proteins, which are found in both Firmicutes and Actinobacteria, and proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) proteins, which are unique to mycobacteria. Recent studies have highlighted the significance of T7SSs in mycobacterial growth, virulence, and pathogenesis. Understanding the mechanisms governing T7SSs could pave the way for novel therapeutic strategies to combat mycobacterial diseases, including tuberculosis (TB).</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"310-336"},"PeriodicalIF":6.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution, classification, and mechanisms of transport, activity regulation, and substrate specificity of ZIP metal transporters. ZIP 金属转运体的进化、分类和转运机制、活性调节和底物特异性。
IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-10-21 DOI: 10.1080/10409238.2024.2405476
Jian Hu, Yuhan Jiang

The Zrt/Irt-like protein (ZIP) family consists of ubiquitously expressed divalent d-block metal transporters that play central roles in the uptake, secretion, excretion, and distribution of several essential and toxic metals in living organisms. The past few years has witnessed rapid progress in the molecular basis of these membrane transport proteins. In this critical review, we summarize the research progress at the molecular level of the ZIP family and discuss the future prospects. Furthermore, an evolutionary path for the unique ZIP fold and a new classification of the ZIP family are proposed based on the presented structural and sequence analyses.

Zrt/Irt-like蛋白(ZIP)家族由普遍表达的二价d-受体金属转运体组成,在生物体内几种必需金属和有毒金属的摄取、分泌、排泄和分布过程中发挥着核心作用。过去几年,这些膜转运蛋白的分子基础研究进展迅速。在这篇重要综述中,我们总结了 ZIP 家族分子水平的研究进展,并讨论了未来的前景。此外,我们还根据所提供的结构和序列分析,提出了独特 ZIP 折叠的进化路径以及 ZIP 家族的新分类。
{"title":"Evolution, classification, and mechanisms of transport, activity regulation, and substrate specificity of ZIP metal transporters.","authors":"Jian Hu, Yuhan Jiang","doi":"10.1080/10409238.2024.2405476","DOIUrl":"10.1080/10409238.2024.2405476","url":null,"abstract":"<p><p>The Zrt/Irt-like protein (ZIP) family consists of ubiquitously expressed divalent <i>d</i>-block metal transporters that play central roles in the uptake, secretion, excretion, and distribution of several essential and toxic metals in living organisms. The past few years has witnessed rapid progress in the molecular basis of these membrane transport proteins. In this critical review, we summarize the research progress at the molecular level of the ZIP family and discuss the future prospects. Furthermore, an evolutionary path for the unique ZIP fold and a new classification of the ZIP family are proposed based on the presented structural and sequence analyses.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"245-266"},"PeriodicalIF":6.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11658277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exercise training and changes in skeletal muscle mitochondrial proteins: from blots to "omics". 运动训练与骨骼肌线粒体蛋白质的变化:从印迹到 "omics"。
IF 6.5 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-09-17 DOI: 10.1080/10409238.2024.2383408
Elizabeth G Reisman,Nikeisha J Caruana,David J Bishop
Mitochondria are essential, membrane-enclosed organelles that consist of ∼1100 different proteins, which allow for many diverse functions critical to maintaining metabolism. Highly metabolic tissues, such as skeletal muscle, have a high mitochondrial content that increases with exercise training. The classic western blot technique has revealed training-induced increases in the relatively small number of individual mitochondrial proteins studied (∼5% of the >1100 proteins in MitoCarta), with some of these changes dependent on the training stimulus. Proteomic approaches have identified hundreds of additional mitochondrial proteins that respond to exercise training. There is, however, surprisingly little crossover in the mitochondrial proteins identified in the published human training studies. This suggests that to better understand the link between training-induced changes in mitochondrial proteins and metabolism, future studies need to move beyond maximizing protein detection to adopting methods that will increase the reliability of the changes in protein abundance observed.
线粒体是一种重要的膜封闭细胞器,由 1100 多种不同的蛋白质组成,可发挥对维持新陈代谢至关重要的多种功能。新陈代谢旺盛的组织,如骨骼肌,线粒体含量很高,并随着运动训练而增加。经典的 Western 印迹技术显示,训练诱导了所研究的相对较少的线粒体蛋白质(占 MitoCarta 中超过 1100 种蛋白质的 5%)的增加,其中一些变化取决于训练刺激。蛋白质组学方法还发现了数百种对运动训练有反应的线粒体蛋白质。然而,在已发表的人体训练研究中,所发现的线粒体蛋白质几乎没有交叉,这令人惊讶。这表明,要想更好地了解训练诱导的线粒体蛋白质变化与新陈代谢之间的联系,未来的研究不仅需要最大限度地检测蛋白质,还需要采用能提高所观察到的蛋白质丰度变化可靠性的方法。
{"title":"Exercise training and changes in skeletal muscle mitochondrial proteins: from blots to \"omics\".","authors":"Elizabeth G Reisman,Nikeisha J Caruana,David J Bishop","doi":"10.1080/10409238.2024.2383408","DOIUrl":"https://doi.org/10.1080/10409238.2024.2383408","url":null,"abstract":"Mitochondria are essential, membrane-enclosed organelles that consist of ∼1100 different proteins, which allow for many diverse functions critical to maintaining metabolism. Highly metabolic tissues, such as skeletal muscle, have a high mitochondrial content that increases with exercise training. The classic western blot technique has revealed training-induced increases in the relatively small number of individual mitochondrial proteins studied (∼5% of the >1100 proteins in MitoCarta), with some of these changes dependent on the training stimulus. Proteomic approaches have identified hundreds of additional mitochondrial proteins that respond to exercise training. There is, however, surprisingly little crossover in the mitochondrial proteins identified in the published human training studies. This suggests that to better understand the link between training-induced changes in mitochondrial proteins and metabolism, future studies need to move beyond maximizing protein detection to adopting methods that will increase the reliability of the changes in protein abundance observed.","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"17 1","pages":"1-23"},"PeriodicalIF":6.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142256280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical Reviews in Biochemistry and Molecular Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1