{"title":"Simulation of Blood as Fluid: A Review From Rheological Aspects","authors":"Vikas Kannojiya;Arup Kumar Das;Prasanta Kumar Das","doi":"10.1109/RBME.2020.3011182","DOIUrl":null,"url":null,"abstract":"Blood flow in the human vascular system is a complex to understand example of fluid dynamics in a closed conduit. Any irregularities in the hemodynamics may lead to lethal cardiovascular disease like heart attack, heart failure and ischemia. Numerical simulation of hemodynamics in the blood vessel can facilitate a thorough understanding of blood flow and its interaction with the adjacent vessel wall. A good simulation approach for blood flow can be helpful in early prediction and diagnosis of the mentioned disease. The simulation outcomes may also provide decision support for surgical planning and medical implants. This study reports an extensive review of various approaches adopted to analyze the influence of blood rheological characteristics in a different class of blood vessels. In particular, emphasis was given on the identification of best possible rheological model to effectively solve the hemodynamics inside different blood vessels. The performance capability of different rheological models was discussed for different classes and conditions of vessels and the best/poor performing models are listed out. The Carreau, Casson and generalized power-law models were appeared to be superior for solving the blood flow at all shear rates. In contrast, power law, Walburn-Scheck and Herchel-Bulkley model lacks behind in the purpose.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"14 ","pages":"327-341"},"PeriodicalIF":17.2000,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/RBME.2020.3011182","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9146357/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 9
Abstract
Blood flow in the human vascular system is a complex to understand example of fluid dynamics in a closed conduit. Any irregularities in the hemodynamics may lead to lethal cardiovascular disease like heart attack, heart failure and ischemia. Numerical simulation of hemodynamics in the blood vessel can facilitate a thorough understanding of blood flow and its interaction with the adjacent vessel wall. A good simulation approach for blood flow can be helpful in early prediction and diagnosis of the mentioned disease. The simulation outcomes may also provide decision support for surgical planning and medical implants. This study reports an extensive review of various approaches adopted to analyze the influence of blood rheological characteristics in a different class of blood vessels. In particular, emphasis was given on the identification of best possible rheological model to effectively solve the hemodynamics inside different blood vessels. The performance capability of different rheological models was discussed for different classes and conditions of vessels and the best/poor performing models are listed out. The Carreau, Casson and generalized power-law models were appeared to be superior for solving the blood flow at all shear rates. In contrast, power law, Walburn-Scheck and Herchel-Bulkley model lacks behind in the purpose.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.