Foundation model, trained on a diverse range of data and adaptable to a myriad of tasks, is advancing healthcare. It fosters the development of healthcare artificial intelligence (AI) models tailored to the intricacies of the medical field, bridging the gap between limited AI models and the varied nature of healthcare practices. The advancement of a healthcare foundation model (HFM) brings forth tremendous potential to augment intelligent healthcare services across a broad spectrum of scenarios. However, despite the imminent widespread deployment of HFMs, there is currently a lack of clear understanding regarding their operation in the healthcare field, their existing challenges, and their future trajectory. To answer these critical inquiries, we present a comprehensive and in-depth examination that delves into the landscape of HFMs. It begins with a comprehensive overview of HFMs, encompassing their methods, data, and applications, to provide a quick understanding of the current progress. Subsequently, it delves into a thorough exploration of the challenges associated with data, algorithms, and computing infrastructures in constructing and widely applying foundation models in healthcare. Furthermore, this survey identifies promising directions for future development in this field. We believe that this survey will enhance the community's understanding of the current progress of HFMs and serve as a valuable source of guidance for future advancements in this domain. For the latest HFM papers and related resources, please refer to our website.
基金会模型在各种数据基础上进行训练,可适应无数任务,正在推动医疗保健事业的发展。它促进了医疗人工智能(AI)模型的发展,使其适合医疗领域的复杂性,弥补了有限的 AI 模型与医疗实践的多样性之间的差距。医疗保健基础模型(HFM)的发展为在各种场景中增强智能医疗保健服务带来了巨大潜力。然而,尽管 HFM 的广泛部署迫在眉睫,但目前人们对其在医疗保健领域的运作、现有挑战及其未来发展轨迹还缺乏清晰的认识。为了回答这些关键问题,我们对高频医疗设备的发展前景进行了全面深入的研究。首先,我们将全面概述高频市场,包括其方法、数据和应用,以便快速了解当前的进展情况。随后,它深入探讨了在医疗保健领域构建和广泛应用基础模型时与数据、算法和计算基础设施相关的挑战。此外,本调查还为该领域的未来发展指明了前景广阔的方向。我们相信,这份调查报告将增进社区对 HFM 当前进展的了解,并为该领域的未来发展提供宝贵的指导。如需了解最新的 HFM 论文和相关资源,请访问我们的网站。
{"title":"Foundation Model for Advancing Healthcare: Challenges, Opportunities and Future Directions.","authors":"Yuting He, Fuxiang Huang, Xinrui Jiang, Yuxiang Nie, Minghao Wang, Jiguang Wang, Hao Chen","doi":"10.1109/RBME.2024.3496744","DOIUrl":"https://doi.org/10.1109/RBME.2024.3496744","url":null,"abstract":"<p><p>Foundation model, trained on a diverse range of data and adaptable to a myriad of tasks, is advancing healthcare. It fosters the development of healthcare artificial intelligence (AI) models tailored to the intricacies of the medical field, bridging the gap between limited AI models and the varied nature of healthcare practices. The advancement of a healthcare foundation model (HFM) brings forth tremendous potential to augment intelligent healthcare services across a broad spectrum of scenarios. However, despite the imminent widespread deployment of HFMs, there is currently a lack of clear understanding regarding their operation in the healthcare field, their existing challenges, and their future trajectory. To answer these critical inquiries, we present a comprehensive and in-depth examination that delves into the landscape of HFMs. It begins with a comprehensive overview of HFMs, encompassing their methods, data, and applications, to provide a quick understanding of the current progress. Subsequently, it delves into a thorough exploration of the challenges associated with data, algorithms, and computing infrastructures in constructing and widely applying foundation models in healthcare. Furthermore, this survey identifies promising directions for future development in this field. We believe that this survey will enhance the community's understanding of the current progress of HFMs and serve as a valuable source of guidance for future advancements in this domain. For the latest HFM papers and related resources, please refer to our website.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1109/RBME.2024.3494715
Yesh Doctor, Milan Sanghvi, Prashant Mali
Genome and transcriptome engineering have emerged as powerful tools in modern biotechnology, driving advancements in precision medicine and novel therapeutics. In this review, we provide a comprehensive overview of the current methodologies, applications, and future directions in genome and transcriptome engineering. Through this, we aim to provide a guide for tool selection, critically analyzing the strengths, weaknesses, and best use cases of these tools to provide context on their suitability for various applications. We explore standard and recent developments in genome engineering, such as base editors and prime editing, and provide insight into tool selection for change of function (knockout, deletion, insertion, substitution) and change of expression (repression, activation) contexts. Advancements in transcriptome engineering are also explored, focusing on established technologies like antisense oligonucleotides (ASOs) and RNA interference (RNAi), as well as recent developments such as CRISPR-Cas13 and adenosine deaminases acting on RNA (ADAR). This review offers a comparison of different approaches to achieve similar biological goals, and consideration of high-throughput applications that enable the probing of a variety of targets. This review elucidates the transformative impact of genome and transcriptome engineering on biological research and clinical applications that will pave the way for future innovations in the field.
{"title":"A Manual for Genome and Transcriptome Engineering.","authors":"Yesh Doctor, Milan Sanghvi, Prashant Mali","doi":"10.1109/RBME.2024.3494715","DOIUrl":"https://doi.org/10.1109/RBME.2024.3494715","url":null,"abstract":"<p><p>Genome and transcriptome engineering have emerged as powerful tools in modern biotechnology, driving advancements in precision medicine and novel therapeutics. In this review, we provide a comprehensive overview of the current methodologies, applications, and future directions in genome and transcriptome engineering. Through this, we aim to provide a guide for tool selection, critically analyzing the strengths, weaknesses, and best use cases of these tools to provide context on their suitability for various applications. We explore standard and recent developments in genome engineering, such as base editors and prime editing, and provide insight into tool selection for change of function (knockout, deletion, insertion, substitution) and change of expression (repression, activation) contexts. Advancements in transcriptome engineering are also explored, focusing on established technologies like antisense oligonucleotides (ASOs) and RNA interference (RNAi), as well as recent developments such as CRISPR-Cas13 and adenosine deaminases acting on RNA (ADAR). This review offers a comparison of different approaches to achieve similar biological goals, and consideration of high-throughput applications that enable the probing of a variety of targets. This review elucidates the transformative impact of genome and transcriptome engineering on biological research and clinical applications that will pave the way for future innovations in the field.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1109/RBME.2024.3493775
Xiang Li, Lin Zhao, Lu Zhang, Zihao Wu, Zhengliang Liu, Hanqi Jiang, Chao Cao, Shaochen Xu, Yiwei Li, Haixing Dai, Yixuan Yuan, Jun Liu, Gang Li, Dajiang Zhu, Pingkun Yan, Quanzheng Li, Wei Liu, Tianming Liu, Dinggang Shen
Large-scale Artificial General Intelligence (AGI) models, including Large Language Models (LLMs) such as ChatGPT/GPT-4, have achieved unprecedented success in a variety of general domain tasks. Yet, when applied directly to specialized domains like medical imaging, which require in-depth expertise, these models face notable challenges arising from the medical field's inherent complexities and unique characteristics. In this review, we delve into the potential applications of AGI models in medical imaging and healthcare, with a primary focus on LLMs, Large Vision Models, and Large Multimodal Models. We provide a thorough overview of the key features and enabling techniques of LLMs and AGI, and further examine the roadmaps guiding the evolution and implementation of AGI models in the medical sector, summarizing their present applications, potentialities, and associated challenges. In addition, we highlight potential future research directions, offering a holistic view on upcoming ventures. This comprehensive review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
{"title":"Artificial General Intelligence for Medical Imaging Analysis.","authors":"Xiang Li, Lin Zhao, Lu Zhang, Zihao Wu, Zhengliang Liu, Hanqi Jiang, Chao Cao, Shaochen Xu, Yiwei Li, Haixing Dai, Yixuan Yuan, Jun Liu, Gang Li, Dajiang Zhu, Pingkun Yan, Quanzheng Li, Wei Liu, Tianming Liu, Dinggang Shen","doi":"10.1109/RBME.2024.3493775","DOIUrl":"https://doi.org/10.1109/RBME.2024.3493775","url":null,"abstract":"<p><p>Large-scale Artificial General Intelligence (AGI) models, including Large Language Models (LLMs) such as ChatGPT/GPT-4, have achieved unprecedented success in a variety of general domain tasks. Yet, when applied directly to specialized domains like medical imaging, which require in-depth expertise, these models face notable challenges arising from the medical field's inherent complexities and unique characteristics. In this review, we delve into the potential applications of AGI models in medical imaging and healthcare, with a primary focus on LLMs, Large Vision Models, and Large Multimodal Models. We provide a thorough overview of the key features and enabling techniques of LLMs and AGI, and further examine the roadmaps guiding the evolution and implementation of AGI models in the medical sector, summarizing their present applications, potentialities, and associated challenges. In addition, we highlight potential future research directions, offering a holistic view on upcoming ventures. This comprehensive review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1109/RBME.2024.3492381
Chenqi Li, Timothy Denison, Tingting Zhu
Advancements in wearable sensor technologies and the digitization of medical records have contributed to the unprecedented ubiquity of biomedical time series data. Data-driven models have tremendous potential to assist clinical diagnosis and improve patient care by improving long-term monitoring capabilities, facilitating early disease detection and intervention, as well as promoting personalized healthcare delivery. However, accessing extensively labeled datasets to train data-hungry deep learning models encounters many barriers, such as long-tail distribution of rare diseases, cost of annotation, privacy and security concerns, data-sharing regulations, and ethical considerations. An emerging approach to overcome the scarcity of labeled data is to augment AI methods with human-like capabilities to leverage past experiences to learn new tasks with limited examples, called few-shot learning. This survey provides a comprehensive review and comparison of few-shot learning methods for biomedical time series applications. The clinical benefits and limitations of such methods are discussed in relation to traditional data-driven approaches. This paper aims to provide insights into the current landscape of few-shot learning for biomedical time series and its implications for future research and applications.
{"title":"A Survey of Few-Shot Learning for Biomedical Time Series.","authors":"Chenqi Li, Timothy Denison, Tingting Zhu","doi":"10.1109/RBME.2024.3492381","DOIUrl":"https://doi.org/10.1109/RBME.2024.3492381","url":null,"abstract":"<p><p>Advancements in wearable sensor technologies and the digitization of medical records have contributed to the unprecedented ubiquity of biomedical time series data. Data-driven models have tremendous potential to assist clinical diagnosis and improve patient care by improving long-term monitoring capabilities, facilitating early disease detection and intervention, as well as promoting personalized healthcare delivery. However, accessing extensively labeled datasets to train data-hungry deep learning models encounters many barriers, such as long-tail distribution of rare diseases, cost of annotation, privacy and security concerns, data-sharing regulations, and ethical considerations. An emerging approach to overcome the scarcity of labeled data is to augment AI methods with human-like capabilities to leverage past experiences to learn new tasks with limited examples, called few-shot learning. This survey provides a comprehensive review and comparison of few-shot learning methods for biomedical time series applications. The clinical benefits and limitations of such methods are discussed in relation to traditional data-driven approaches. This paper aims to provide insights into the current landscape of few-shot learning for biomedical time series and its implications for future research and applications.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-06DOI: 10.1109/RBME.2024.3490455
P Hunter, B de Bono, D Brooks, R Christie, J Hussan, M Lin, D Nickerson
Interest in the concept of a virtual human model that can encompass human physiology and anatomy on a biophysical (mechanistic) basis, and can assist with the clinical diagnosis and treatment of disease, appears to be growing rapidly around the globe. When such models are personalised and coupled with continual diagnostic measurements, they are called 'digital twins'. We argue here that the most useful form of virtual human model will be one that is constrained by the laws of physics, contains a comprehensive knowledge graph of all human physiology and anatomy, is multiscale in the sense of linking systems physiology down to protein function, and can to some extent be personalized and linked directly with clinical records. We discuss current progress from the IUPS Physiome Project and the requirements for a framework to achieve such a model.
{"title":"The Physiome Project and Digital Twins.","authors":"P Hunter, B de Bono, D Brooks, R Christie, J Hussan, M Lin, D Nickerson","doi":"10.1109/RBME.2024.3490455","DOIUrl":"https://doi.org/10.1109/RBME.2024.3490455","url":null,"abstract":"<p><p>Interest in the concept of a virtual human model that can encompass human physiology and anatomy on a biophysical (mechanistic) basis, and can assist with the clinical diagnosis and treatment of disease, appears to be growing rapidly around the globe. When such models are personalised and coupled with continual diagnostic measurements, they are called 'digital twins'. We argue here that the most useful form of virtual human model will be one that is constrained by the laws of physics, contains a comprehensive knowledge graph of all human physiology and anatomy, is multiscale in the sense of linking systems physiology down to protein function, and can to some extent be personalized and linked directly with clinical records. We discuss current progress from the IUPS Physiome Project and the requirements for a framework to achieve such a model.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142591973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1109/RBME.2024.3486439
Lei Li, Julia Camps, Blanca Rodriguez, Vicente Grau
Cardiac digital twins (CDTs) are personalized virtual representations used to understand complex cardiac mechanisms. A critical component of CDT development is solving the ECG inverse problem, which enables the reconstruction of cardiac sources and the estimation of patient-specific electrophysiology (EP) parameters from surface ECG data. Despite challenges from complex cardiac anatomy, noisy ECG data, and the ill-posed nature of the inverse problem, recent advances in computational methods have greatly improved the accuracy and efficiency of ECG inverse inference, strengthening the fidelity of CDTs. This paper aims to provide a comprehensive review of the methods of solving ECG inverse problem, the validation strategies, the clinical applications, and future perspectives. For the methodologies, we broadly classify state-of-the-art approaches into two categories: deterministic and probabilistic methods, including both conventional and deep learning-based techniques. Integrating physics laws with deep learning models holds promise, but challenges such as capturing dynamic electrophysiology accurately, accessing accurate domain knowledge, and quantifying prediction uncertainty persist. Integrating models into clinical workflows while ensuring interpretability and usability for healthcare professionals is essential. Overcoming these challenges will drive further research in CDTs.
{"title":"Solving the Inverse Problem of Electrocardiography for Cardiac Digital Twins: A Survey.","authors":"Lei Li, Julia Camps, Blanca Rodriguez, Vicente Grau","doi":"10.1109/RBME.2024.3486439","DOIUrl":"https://doi.org/10.1109/RBME.2024.3486439","url":null,"abstract":"<p><p>Cardiac digital twins (CDTs) are personalized virtual representations used to understand complex cardiac mechanisms. A critical component of CDT development is solving the ECG inverse problem, which enables the reconstruction of cardiac sources and the estimation of patient-specific electrophysiology (EP) parameters from surface ECG data. Despite challenges from complex cardiac anatomy, noisy ECG data, and the ill-posed nature of the inverse problem, recent advances in computational methods have greatly improved the accuracy and efficiency of ECG inverse inference, strengthening the fidelity of CDTs. This paper aims to provide a comprehensive review of the methods of solving ECG inverse problem, the validation strategies, the clinical applications, and future perspectives. For the methodologies, we broadly classify state-of-the-art approaches into two categories: deterministic and probabilistic methods, including both conventional and deep learning-based techniques. Integrating physics laws with deep learning models holds promise, but challenges such as capturing dynamic electrophysiology accurately, accessing accurate domain knowledge, and quantifying prediction uncertainty persist. Integrating models into clinical workflows while ensuring interpretability and usability for healthcare professionals is essential. Overcoming these challenges will drive further research in CDTs.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1109/RBME.2024.3485022
Jiahao Huang, Yinzhe Wu, Fanwen Wang, Yingying Fang, Yang Nan, Cagan Alkan, Daniel Abraham, Congyu Liao, Lei Xu, Zhifan Gao, Weiwen Wu, Lei Zhu, Zhaolin Chen, Peter Lally, Neal Bangerter, Kawin Setsompop, Yike Guo, Daniel Rueckert, Ge Wang, Guang Yang
Magnetic Resonance Imaging (MRI) is a pivotal clinical diagnostic tool, yet its extended scanning times often compromise patient comfort and image quality, especially in volumetric, temporal and quantitative scans. This review elucidates recent advances in MRI acceleration via data and physics-driven models, leveraging techniques from algorithm unrolling models, enhancement-based methods, and plug-and-play models to the emerging full spectrum of generative model-based methods. We also explore the synergistic integration of data models with physics-based insights, encompassing the advancements in multi-coil hardware accelerations like parallel imaging and simultaneous multi-slice imaging, and the optimization of sampling patterns. We then focus on domain-specific challenges and opportunities, including image redundancy exploitation, image integrity, evaluation metrics, data heterogeneity, and model generalization. This work also discusses potential solutions and future research directions, with an emphasis on the role of data harmonization and federated learning for further improving the general applicability and performance of these methods in MRI reconstruction.
{"title":"Data- and Physics-driven Deep Learning Based Reconstruction for Fast MRI: Fundamentals and Methodologies.","authors":"Jiahao Huang, Yinzhe Wu, Fanwen Wang, Yingying Fang, Yang Nan, Cagan Alkan, Daniel Abraham, Congyu Liao, Lei Xu, Zhifan Gao, Weiwen Wu, Lei Zhu, Zhaolin Chen, Peter Lally, Neal Bangerter, Kawin Setsompop, Yike Guo, Daniel Rueckert, Ge Wang, Guang Yang","doi":"10.1109/RBME.2024.3485022","DOIUrl":"https://doi.org/10.1109/RBME.2024.3485022","url":null,"abstract":"<p><p>Magnetic Resonance Imaging (MRI) is a pivotal clinical diagnostic tool, yet its extended scanning times often compromise patient comfort and image quality, especially in volumetric, temporal and quantitative scans. This review elucidates recent advances in MRI acceleration via data and physics-driven models, leveraging techniques from algorithm unrolling models, enhancement-based methods, and plug-and-play models to the emerging full spectrum of generative model-based methods. We also explore the synergistic integration of data models with physics-based insights, encompassing the advancements in multi-coil hardware accelerations like parallel imaging and simultaneous multi-slice imaging, and the optimization of sampling patterns. We then focus on domain-specific challenges and opportunities, including image redundancy exploitation, image integrity, evaluation metrics, data heterogeneity, and model generalization. This work also discusses potential solutions and future research directions, with an emphasis on the role of data harmonization and federated learning for further improving the general applicability and performance of these methods in MRI reconstruction.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1109/RBME.2024.3481360
Wenzheng Heng, Shukun Yin, Yonglin Chen, Wei Gao
Breath analysis and monitoring have emerged as pivotal components in both clinical research and daily health management, particularly in addressing the global health challenges posed by respiratory and metabolic disorders. The advancement of breath analysis strategies necessitates a multidisciplinary approach, seamlessly integrating expertise from medicine, biology, engineering, and materials science. Recent innovations in laboratory methodologies and wearable sensing technologies have ushered in an era of precise, real-time, and in situ breath analysis and monitoring. This comprehensive review elucidates the physical and chemical aspects of breath analysis, encompassing respiratory parameters and both volatile and non-volatile constituents. It emphasizes their physiological and clinical significance, while also exploring cutting-edge laboratory testing techniques and state-of-the-art wearable devices. Furthermore, the review delves into the application of sophisticated data processing technologies in the burgeoning field of breathomics and examines the potential of breath control in human-machine interaction paradigms. Additionally, it provides insights into the challenges of translating innovative laboratory and wearable concepts into mainstream clinical and daily practice. Continued innovation and interdisciplinary collaboration will drive progress in breath analysis, potentially revolutionizing personalized medicine through entirely non-invasive breath methodology.
{"title":"Exhaled Breath Analysis: from Laboratory Test to Wearable Sensing.","authors":"Wenzheng Heng, Shukun Yin, Yonglin Chen, Wei Gao","doi":"10.1109/RBME.2024.3481360","DOIUrl":"https://doi.org/10.1109/RBME.2024.3481360","url":null,"abstract":"<p><p>Breath analysis and monitoring have emerged as pivotal components in both clinical research and daily health management, particularly in addressing the global health challenges posed by respiratory and metabolic disorders. The advancement of breath analysis strategies necessitates a multidisciplinary approach, seamlessly integrating expertise from medicine, biology, engineering, and materials science. Recent innovations in laboratory methodologies and wearable sensing technologies have ushered in an era of precise, real-time, and in situ breath analysis and monitoring. This comprehensive review elucidates the physical and chemical aspects of breath analysis, encompassing respiratory parameters and both volatile and non-volatile constituents. It emphasizes their physiological and clinical significance, while also exploring cutting-edge laboratory testing techniques and state-of-the-art wearable devices. Furthermore, the review delves into the application of sophisticated data processing technologies in the burgeoning field of breathomics and examines the potential of breath control in human-machine interaction paradigms. Additionally, it provides insights into the challenges of translating innovative laboratory and wearable concepts into mainstream clinical and daily practice. Continued innovation and interdisciplinary collaboration will drive progress in breath analysis, potentially revolutionizing personalized medicine through entirely non-invasive breath methodology.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142476965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-26DOI: 10.1109/RBME.2024.3449790
Bradley J Edelman, Shuailei Zhang, Gerwin Schalk, Peter Brunner, Gernot Muller-Putz, Cuntai Guan, Bin He
Brain-computer interface (BCI) is a rapidly evolving technology that has the potential to widely influence research, clinical and recreational use. Non-invasive BCI approaches are particularly common as they can impact a large number of participants safely and at a relatively low cost. Where traditional non-invasive BCIs were used for simple computer cursor tasks, it is now increasingly common for these systems to control robotic devices for complex tasks that may be useful in daily life. In this review, we provide an overview of the general BCI framework as well as the various methods that can be used to record neural activity, extract signals of interest, and decode brain states. In this context, we summarize the current state-of-the-art of non-invasive BCI research, focusing on trends in both the application of BCIs for controlling external devices and algorithm development to optimize their use. We also discuss various open-source BCI toolboxes and software, and describe their impact on the field at large.
{"title":"Non-invasive Brain-Computer Interfaces: State of the Art and Trends.","authors":"Bradley J Edelman, Shuailei Zhang, Gerwin Schalk, Peter Brunner, Gernot Muller-Putz, Cuntai Guan, Bin He","doi":"10.1109/RBME.2024.3449790","DOIUrl":"https://doi.org/10.1109/RBME.2024.3449790","url":null,"abstract":"<p><p>Brain-computer interface (BCI) is a rapidly evolving technology that has the potential to widely influence research, clinical and recreational use. Non-invasive BCI approaches are particularly common as they can impact a large number of participants safely and at a relatively low cost. Where traditional non-invasive BCIs were used for simple computer cursor tasks, it is now increasingly common for these systems to control robotic devices for complex tasks that may be useful in daily life. In this review, we provide an overview of the general BCI framework as well as the various methods that can be used to record neural activity, extract signals of interest, and decode brain states. In this context, we summarize the current state-of-the-art of non-invasive BCI research, focusing on trends in both the application of BCIs for controlling external devices and algorithm development to optimize their use. We also discuss various open-source BCI toolboxes and software, and describe their impact on the field at large.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142074143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-12DOI: 10.1109/RBME.2024.3425769
Isaiah Lahr, Saghir Alfasly, Peyman Nejat, Jibran Khan, Luke Kottom, Vaishnavi Kumbhar, Areej Alsaafin, Abubakr Shafique, Sobhan Hemati, Ghazal Alabtah, Nneka Comfere, Dennis Murphree, Aaron Mangold, Saba Yasir, Chady Meroueh, Lisa Boardman, Vijay H Shah, Joaquin J Garcia, H R Tizhoosh
Searching for similar images in archives of histology and histopathology images is a crucial task that may aid in patient tissue comparison for various purposes, ranging from triaging and diagnosis to prognosis and prediction. Whole slide images (WSIs) are highly detailed digital representations of tissue specimens mounted on glass slides. Matching WSI to WSI can serve as the critical method for patient tissue comparison. In this paper, we report extensive analysis and validation of four search methods bag of visual words (BoVW), Yottixel, SISH, RetCCL, and some of their potential variants. We analyze their algorithms and structures and assess their performance. For this evaluation, we utilized four internal datasets (1269 patients) and three public datasets (1207 patients), totaling more than 200, 000 patches from 38 different classes/subtypes across five primary sites. Certain search engines, for example, BoVW, exhibit notable efficiency and speed but suffer from low accuracy. Conversely, search engines like Yottixel demonstrate efficiency and speed, providing moderately accurate results. Recent proposals, including SISH, display inefficiency and yield inconsistent outcomes, while alternatives like RetCCL prove inadequate in both accuracy and efficiency. Further research is imperative to address the dual aspects of accuracy and minimal storage requirements in histopathological image search.
在组织学和组织病理学图像档案中搜索相似图像是一项重要任务,可帮助进行病人组织对比,以实现从分流和诊断到预后和预测等各种目的。整张载玻片图像(WSI)是安装在玻璃载玻片上的组织标本的高度详细数字图像。将 WSI 与 WSI 匹配可作为患者组织比对的关键方法。在本文中,我们报告了对四种搜索方法视觉词袋(BoVW)、Yottixel、SISH、RetCCL 及其一些潜在变体的广泛分析和验证。我们分析了它们的算法和结构,并评估了它们的性能。在评估过程中,我们使用了四个内部数据集(1269 名患者)和三个公共数据集(1207 名患者),共计来自五个主要网站的 38 个不同类别/子类型的 20 多万个补丁。某些搜索引擎,如 BoVW,效率高、速度快,但准确率低。相反,像 Yottixel 这样的搜索引擎则表现出效率和速度,并能提供中等准确度的结果。包括 SISH 在内的最新提案显示出效率低下和结果不一致的问题,而 RetCCL 等替代方案则被证明在准确性和效率方面都存在不足。要解决组织病理学图像搜索的准确性和最低存储要求这两个方面的问题,进一步的研究势在必行。
{"title":"Analysis and Validation of Image Search Engines in Histopathology.","authors":"Isaiah Lahr, Saghir Alfasly, Peyman Nejat, Jibran Khan, Luke Kottom, Vaishnavi Kumbhar, Areej Alsaafin, Abubakr Shafique, Sobhan Hemati, Ghazal Alabtah, Nneka Comfere, Dennis Murphree, Aaron Mangold, Saba Yasir, Chady Meroueh, Lisa Boardman, Vijay H Shah, Joaquin J Garcia, H R Tizhoosh","doi":"10.1109/RBME.2024.3425769","DOIUrl":"https://doi.org/10.1109/RBME.2024.3425769","url":null,"abstract":"<p><p>Searching for similar images in archives of histology and histopathology images is a crucial task that may aid in patient tissue comparison for various purposes, ranging from triaging and diagnosis to prognosis and prediction. Whole slide images (WSIs) are highly detailed digital representations of tissue specimens mounted on glass slides. Matching WSI to WSI can serve as the critical method for patient tissue comparison. In this paper, we report extensive analysis and validation of four search methods bag of visual words (BoVW), Yottixel, SISH, RetCCL, and some of their potential variants. We analyze their algorithms and structures and assess their performance. For this evaluation, we utilized four internal datasets (1269 patients) and three public datasets (1207 patients), totaling more than 200, 000 patches from 38 different classes/subtypes across five primary sites. Certain search engines, for example, BoVW, exhibit notable efficiency and speed but suffer from low accuracy. Conversely, search engines like Yottixel demonstrate efficiency and speed, providing moderately accurate results. Recent proposals, including SISH, display inefficiency and yield inconsistent outcomes, while alternatives like RetCCL prove inadequate in both accuracy and efficiency. Further research is imperative to address the dual aspects of accuracy and minimal storage requirements in histopathological image search.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141601949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}