{"title":"LncRNA LEF1-AS1 promotes osteogenic differentiation of dental pulp stem cells via sponging miR-24-3p.","authors":"Yuexia Wu, Keqian Lian, Cong Sun","doi":"10.1007/s11010-020-03868-7","DOIUrl":null,"url":null,"abstract":"<p><p>The role of lncRNA LEF1-AS1 in the regulation of osteogenic differentiation of dental pulp stem cells (DPSCs) is still obscure. Here, we demonstrated that LncRNA LEF1-AS1 expression was associated with osteogenic differentiation of DPSCs and overexpression of LEF1-AS1 promoted osteogenic differentiation. Moreover, lncRNA LEF1-AS1 and miR-24-3p could directly regulate each other and LEF1-AS1 acted as sponge partner of miR-24-3p. Furthermore, LEF1-AS1 and miR-24-3p synergized to regulate osteogenic differentiation of DPSCs. Finally, we verified TGFBR1 was the direct target of miR-24-3p in osteogenic differentiation of DPSCs and miR-24-3p/LEF1-AS1 sponged to regulate TGFBR1 expression. Our study revealed a novel mechanism about how did lncRNA LEF1-AS1 execute function in osteogenesis of DPSCs and thus might serve as potential therapeutic target for the bone regeneration in the dental pulp.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":"475 1-2","pages":"161-169"},"PeriodicalIF":3.7000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11010-020-03868-7","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-020-03868-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 16
Abstract
The role of lncRNA LEF1-AS1 in the regulation of osteogenic differentiation of dental pulp stem cells (DPSCs) is still obscure. Here, we demonstrated that LncRNA LEF1-AS1 expression was associated with osteogenic differentiation of DPSCs and overexpression of LEF1-AS1 promoted osteogenic differentiation. Moreover, lncRNA LEF1-AS1 and miR-24-3p could directly regulate each other and LEF1-AS1 acted as sponge partner of miR-24-3p. Furthermore, LEF1-AS1 and miR-24-3p synergized to regulate osteogenic differentiation of DPSCs. Finally, we verified TGFBR1 was the direct target of miR-24-3p in osteogenic differentiation of DPSCs and miR-24-3p/LEF1-AS1 sponged to regulate TGFBR1 expression. Our study revealed a novel mechanism about how did lncRNA LEF1-AS1 execute function in osteogenesis of DPSCs and thus might serve as potential therapeutic target for the bone regeneration in the dental pulp.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.