IF 2.6 4区 计算机科学Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONSBig DataPub Date : 2020-10-01Epub Date: 2020-08-12DOI:10.1089/big.2020.0070
Yang Li, Buyue Qian, Xianli Zhang, Hui Liu
{"title":"Graph Neural Network-Based Diagnosis Prediction.","authors":"Yang Li, Buyue Qian, Xianli Zhang, Hui Liu","doi":"10.1089/big.2020.0070","DOIUrl":null,"url":null,"abstract":"<p><p>Diagnosis prediction is an important predictive task in health care that aims to predict the patient future diagnosis based on their historical medical records. A crucial requirement for this task is to effectively model the high-dimensional, noisy, and temporal electronic health record (EHR) data. Existing studies fulfill this requirement by applying recurrent neural networks with attention mechanisms, but facing data insufficiency and noise problem. Recently, more accurate and robust medical knowledge-guided methods have been proposed and have achieved superior performance. These methods inject the knowledge from a graph structure medical ontology into deep models via attention mechanisms to provide supplementary information of the input data. However, these methods only partially leverage the knowledge graph and neglect the global structure information, which is an important feature. To address this problem, we propose an end-to-end robust solution, namely Graph Neural Network-Based Diagnosis Prediction (GNDP). First, we propose to utilize the medical knowledge graph as an internal information of a patient by constructing sequential patient graphs. These graphs not only carry the historical information from the EHR but also infuse with domain knowledge. Then we design a robust diagnosis prediction model based on a spatial-temporal graph convolutional network. The proposed model extracts meaningful features from sequential graph EHR data effectively through multiple spatial-temporal graph convolution units to generate robust patients' representations for accurate diagnosis predictions. We evaluate the performance of GNDP against a set of state-of-the-art methods on two real-world medical data sets, the results demonstrate that our methods can achieve a better utilization of knowledge graph and improve the accuracy on diagnosis prediction tasks.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":"8 5","pages":"379-390"},"PeriodicalIF":2.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/big.2020.0070","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2020.0070","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 39
Abstract
Diagnosis prediction is an important predictive task in health care that aims to predict the patient future diagnosis based on their historical medical records. A crucial requirement for this task is to effectively model the high-dimensional, noisy, and temporal electronic health record (EHR) data. Existing studies fulfill this requirement by applying recurrent neural networks with attention mechanisms, but facing data insufficiency and noise problem. Recently, more accurate and robust medical knowledge-guided methods have been proposed and have achieved superior performance. These methods inject the knowledge from a graph structure medical ontology into deep models via attention mechanisms to provide supplementary information of the input data. However, these methods only partially leverage the knowledge graph and neglect the global structure information, which is an important feature. To address this problem, we propose an end-to-end robust solution, namely Graph Neural Network-Based Diagnosis Prediction (GNDP). First, we propose to utilize the medical knowledge graph as an internal information of a patient by constructing sequential patient graphs. These graphs not only carry the historical information from the EHR but also infuse with domain knowledge. Then we design a robust diagnosis prediction model based on a spatial-temporal graph convolutional network. The proposed model extracts meaningful features from sequential graph EHR data effectively through multiple spatial-temporal graph convolution units to generate robust patients' representations for accurate diagnosis predictions. We evaluate the performance of GNDP against a set of state-of-the-art methods on two real-world medical data sets, the results demonstrate that our methods can achieve a better utilization of knowledge graph and improve the accuracy on diagnosis prediction tasks.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.