Wearable Sensor-Based Sign Language Recognition: A Comprehensive Review

IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL IEEE Reviews in Biomedical Engineering Pub Date : 2020-08-26 DOI:10.1109/RBME.2020.3019769
Karly Kudrinko;Emile Flavin;Xiaodan Zhu;Qingguo Li
{"title":"Wearable Sensor-Based Sign Language Recognition: A Comprehensive Review","authors":"Karly Kudrinko;Emile Flavin;Xiaodan Zhu;Qingguo Li","doi":"10.1109/RBME.2020.3019769","DOIUrl":null,"url":null,"abstract":"Sign language is used as a primary form of communication by many people who are Deaf, deafened, hard of hearing, and non-verbal. Communication barriers exist for members of these populations during daily interactions with those who are unable to understand or use sign language. Advancements in technology and machine learning techniques have led to the development of innovative approaches for gesture recognition. This literature review focuses on analyzing studies that use wearable sensor-based systems to classify sign language gestures. A review of 72 studies from 1991 to 2019 was performed to identify trends, best practices, and common challenges. Attributes including sign language variation, sensor configuration, classification method, study design, and performance metrics were analyzed and compared. Results from this literature review could aid in the development of user-centred and robust wearable sensor-based systems for sign language recognition.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"14 ","pages":"82-97"},"PeriodicalIF":17.2000,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/RBME.2020.3019769","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9178440/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 46

Abstract

Sign language is used as a primary form of communication by many people who are Deaf, deafened, hard of hearing, and non-verbal. Communication barriers exist for members of these populations during daily interactions with those who are unable to understand or use sign language. Advancements in technology and machine learning techniques have led to the development of innovative approaches for gesture recognition. This literature review focuses on analyzing studies that use wearable sensor-based systems to classify sign language gestures. A review of 72 studies from 1991 to 2019 was performed to identify trends, best practices, and common challenges. Attributes including sign language variation, sensor configuration, classification method, study design, and performance metrics were analyzed and compared. Results from this literature review could aid in the development of user-centred and robust wearable sensor-based systems for sign language recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可穿戴传感器的手语识别综述
手语被许多聋人、失聪者、听力障碍者和非语言者用作主要的交流形式。在与那些无法理解或使用手语的人的日常互动中,这些人群的成员存在沟通障碍。技术和机器学习技术的进步导致了手势识别创新方法的发展。这篇文献综述的重点是分析使用基于可穿戴传感器的系统对手语手势进行分类的研究。对1991年至2019年的72项研究进行了回顾,以确定趋势、最佳实践和常见挑战。对手语变异、传感器配置、分类方法、研究设计和性能指标等属性进行了分析和比较。这篇文献综述的结果可能有助于开发以用户为中心、稳健的基于可穿戴传感器的手语识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Reviews in Biomedical Engineering
IEEE Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
31.70
自引率
0.60%
发文量
93
期刊介绍: IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.
期刊最新文献
Foundation Model for Advancing Healthcare: Challenges, Opportunities and Future Directions. A Manual for Genome and Transcriptome Engineering. Artificial General Intelligence for Medical Imaging Analysis. A Survey of Few-Shot Learning for Biomedical Time Series. The Physiome Project and Digital Twins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1