Jian Zhang, Chen Yan, Weidong He, Min Wang, Jian Liu
{"title":"Inhibition against p38/MEF2C pathway by Pamapimod protects osteoarthritis chondrocytes hypertrophy.","authors":"Jian Zhang, Chen Yan, Weidong He, Min Wang, Jian Liu","doi":"10.23736/S0031-0808.20.04170-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The p38 mitogen-activated protein kinase pathway plays an important role in the pathogenesis of osteoarthritis (OA) involving in hypertrophy, calcification, and apoptosis of chondrocytes (CHs). In this study, we focused on a p38 inhibitor named Pamapimod (PAM) in the effect of CH hypertrophy degeneration.</p><p><strong>Methods: </strong>CHs were isolated from the cartilage collected from OA patients. Insulin-Transferrin-Selenium (ITS) medium was used as a hypertrophic inducer to establish CH hypertrophy model. Asiatic acid (AA) was used to activate p38 phosphorylation. We transfected CHs with myocyte enhancer factor 2C (MEF2C)-plasmid to upregulate MEF2C expression. Chondrogenic gene expression such as type II collagen and SOX-9, and hypertrophic genes such as type X collagen, MMP-13, and Runx-2 were analyzed by western blot, real-time polymerase chain reaction or immunofluorescence.</p><p><strong>Results: </strong>ITS and AA all contributed to the CHs hypertrophy with an upregulation of p-p38 and MEF2C protein expression. PAM treatments significantly inhibited p-p38 and MEF2C expression, down-regulated type X collagen, MMP-13, and Runx-2 expression and upregulated type II collagen and SOX-9 levels. PAM indirectly affected MEF2C expression and resulted in CHs hypertrophy suppression.</p><p><strong>Conclusions: </strong>PAM protects CHs hypertrophy by the inhibition of the p38/MEF2C pathway.</p>","PeriodicalId":19851,"journal":{"name":"Panminerva medica","volume":" ","pages":"365-371"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Panminerva medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S0031-0808.20.04170-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/2 0:00:00","PubModel":"Epub","JCR":"0","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The p38 mitogen-activated protein kinase pathway plays an important role in the pathogenesis of osteoarthritis (OA) involving in hypertrophy, calcification, and apoptosis of chondrocytes (CHs). In this study, we focused on a p38 inhibitor named Pamapimod (PAM) in the effect of CH hypertrophy degeneration.
Methods: CHs were isolated from the cartilage collected from OA patients. Insulin-Transferrin-Selenium (ITS) medium was used as a hypertrophic inducer to establish CH hypertrophy model. Asiatic acid (AA) was used to activate p38 phosphorylation. We transfected CHs with myocyte enhancer factor 2C (MEF2C)-plasmid to upregulate MEF2C expression. Chondrogenic gene expression such as type II collagen and SOX-9, and hypertrophic genes such as type X collagen, MMP-13, and Runx-2 were analyzed by western blot, real-time polymerase chain reaction or immunofluorescence.
Results: ITS and AA all contributed to the CHs hypertrophy with an upregulation of p-p38 and MEF2C protein expression. PAM treatments significantly inhibited p-p38 and MEF2C expression, down-regulated type X collagen, MMP-13, and Runx-2 expression and upregulated type II collagen and SOX-9 levels. PAM indirectly affected MEF2C expression and resulted in CHs hypertrophy suppression.
Conclusions: PAM protects CHs hypertrophy by the inhibition of the p38/MEF2C pathway.
期刊介绍:
Panminerva Medica publishes scientific papers on internal medicine. Manuscripts may be submitted in the form of editorials, original articles, review articles, case reports, special articles, letters to the Editor and guidelines. The journal aims to provide its readers with papers of the highest quality and impact through a process of careful peer review and editorial work. Duties and responsibilities of all the subjects involved in the editorial process are summarized at Publication ethics. Manuscripts are expected to comply with the instructions to authors which conform to the Uniform Requirements for Manuscripts Submitted to Biomedical Editors by the International Committee of Medical Journal Editors (ICMJE).