Marena Montera, Aleyah Goins, Leos Cmarko, Norbert Weiss, Karin N Westlund, Sascha R A Alles
{"title":"Trigeminal neuropathic pain is alleviated by inhibition of Ca<sub>v</sub>3.3 T-type calcium channels in mice.","authors":"Marena Montera, Aleyah Goins, Leos Cmarko, Norbert Weiss, Karin N Westlund, Sascha R A Alles","doi":"10.1080/19336950.2020.1859248","DOIUrl":null,"url":null,"abstract":"<p><p>In this brief report, we demonstrate that the Ca<sub>v</sub>3.3 T-type voltage-gated calcium channel subtype is involved in our FRICT-ION model of chronic trigeminal neuropathic pain. We first showed that the <i>Cacna1i</i> gene encoding Ca<sub>v</sub>3.3 is significantly upregulated in whole trigeminal ganglia of FRICT-ION mice compared to controls at week 10 post-injury. We confirmed protein upregulation of Ca<sub>v</sub>3.3 compared to controls using Western blot analysis of whole trigeminal ganglia tissues. Finally, we demonstrated that intraperitoneal injection of a selective TAT-based Ca<sub>v</sub>3.3 blocking peptide in FRICT-ION mice significantly reduces Ca<sub>v</sub>3.3 protein expression at the peak anti-allodynic effect (4 hrs post-injection) of the attenuated neuropathic pain behavior. We also suggest that blockade of Ca<sub>v</sub>3.3 may be more effective in attenuating trigeminal neuropathic pain in female than male FRICT-ION mice. Therefore, blocking or attenuating Ca<sub>v</sub>3.3 function may be an effective strategy for the treatment of trigeminal neuropathic pain.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":" ","pages":"31-37"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781641/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19336950.2020.1859248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this brief report, we demonstrate that the Cav3.3 T-type voltage-gated calcium channel subtype is involved in our FRICT-ION model of chronic trigeminal neuropathic pain. We first showed that the Cacna1i gene encoding Cav3.3 is significantly upregulated in whole trigeminal ganglia of FRICT-ION mice compared to controls at week 10 post-injury. We confirmed protein upregulation of Cav3.3 compared to controls using Western blot analysis of whole trigeminal ganglia tissues. Finally, we demonstrated that intraperitoneal injection of a selective TAT-based Cav3.3 blocking peptide in FRICT-ION mice significantly reduces Cav3.3 protein expression at the peak anti-allodynic effect (4 hrs post-injection) of the attenuated neuropathic pain behavior. We also suggest that blockade of Cav3.3 may be more effective in attenuating trigeminal neuropathic pain in female than male FRICT-ION mice. Therefore, blocking or attenuating Cav3.3 function may be an effective strategy for the treatment of trigeminal neuropathic pain.