{"title":"Mechanisms governing PARP expression, localization, and activity in cells.","authors":"Daniel J Sanderson, Michael S Cohen","doi":"10.1080/10409238.2020.1818686","DOIUrl":null,"url":null,"abstract":"<p><p>Poly-(ADP)-ribose polymerases (PARPs) are a family of 17 enzymes in humans that have diverse roles in cell physiology including DNA damage repair, transcription, innate immunity, and regulation of signaling pathways. The modular domain architecture of PARPs gives rise to this functional diversity. PARPs catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD<sup>+</sup>) to targets-proteins and poly-nucleic acids. This enigmatic post-translational modification comes in two varieties: the transfer of a single unit of ADP-ribose, known as mono-ADP-ribosylation (MARylation) or the transfer of multiple units of ADP-ribose, known as poly-ADP-ribosylation (PARylation). Emerging data shows that PARPs are regulated at multiple levels to control when and where PARP-mediated M/PARylation occurs in cells. In this review, we will discuss the latest knowledge regarding the regulation of PARPs in cells: from transcription and protein stability to subcellular localization and modulation of catalytic activity.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 6","pages":"541-554"},"PeriodicalIF":6.2000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2020.1818686","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2020.1818686","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 15
Abstract
Poly-(ADP)-ribose polymerases (PARPs) are a family of 17 enzymes in humans that have diverse roles in cell physiology including DNA damage repair, transcription, innate immunity, and regulation of signaling pathways. The modular domain architecture of PARPs gives rise to this functional diversity. PARPs catalyze the transfer of ADP-ribose from nicotinamide adenine dinucleotide (NAD+) to targets-proteins and poly-nucleic acids. This enigmatic post-translational modification comes in two varieties: the transfer of a single unit of ADP-ribose, known as mono-ADP-ribosylation (MARylation) or the transfer of multiple units of ADP-ribose, known as poly-ADP-ribosylation (PARylation). Emerging data shows that PARPs are regulated at multiple levels to control when and where PARP-mediated M/PARylation occurs in cells. In this review, we will discuss the latest knowledge regarding the regulation of PARPs in cells: from transcription and protein stability to subcellular localization and modulation of catalytic activity.
期刊介绍:
As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties.
Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology.
Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.