An Understudied Dimension: Why Age Needs to Be Considered When Studying Epigenetic-Environment Interactions.

IF 3.2 Q2 GENETICS & HEREDITY Epigenetics Insights Pub Date : 2020-08-05 eCollection Date: 2020-01-01 DOI:10.1177/2516865720947014
Rio Barrere-Cain, Patrick Allard
{"title":"An Understudied Dimension: Why Age Needs to Be Considered When Studying Epigenetic-Environment Interactions.","authors":"Rio Barrere-Cain,&nbsp;Patrick Allard","doi":"10.1177/2516865720947014","DOIUrl":null,"url":null,"abstract":"<p><p>We live in a complex chemical environment where there are an estimated 350 000 chemical compounds or mixtures commercially produced. A strong body of literature shows that there are time points during early development when an organism's epigenome is particularly sensitive to chemicals in its environment. What is less understood is how gene-environment and epigenetic-environment interactions change with age. This question is bidirectional: (1) how do chemicals in the environment affect the aging process and (2) how does aging affect an organism's response to its chemical environment? The study of gene-environment interactions with age is especially important because, in many parts of the world, older individuals are a large and rapidly growing proportion of the population and because aging is a process universal to most of the animal kingdom. Epigenetics has emerged as a crucial framework for studying aging as epigenetic pathways, often triggered by environmental stimuli, have been shown to be essential regulators of the aging process. In this perspective article, we delineate the connection between aging, epigenetics, and environmental exposures. We discuss why it is essential to consider age when researching how an organism interacts with its environment. We describe recent advances in understanding how the chemical environment affects aging and the gap in research on how age affects an organism's response to the environment. Finally, we highlight how model organisms and network approaches can help fill this crucial gap. Taken together, systemic changes that occur in the epigenome with age indicate that adult organisms cannot be treated as a homogeneous population and that there are discrete mechanisms modulating the aging epigenome that we do not yet understand.</p>","PeriodicalId":41996,"journal":{"name":"Epigenetics Insights","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2020-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2516865720947014","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2516865720947014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 5

Abstract

We live in a complex chemical environment where there are an estimated 350 000 chemical compounds or mixtures commercially produced. A strong body of literature shows that there are time points during early development when an organism's epigenome is particularly sensitive to chemicals in its environment. What is less understood is how gene-environment and epigenetic-environment interactions change with age. This question is bidirectional: (1) how do chemicals in the environment affect the aging process and (2) how does aging affect an organism's response to its chemical environment? The study of gene-environment interactions with age is especially important because, in many parts of the world, older individuals are a large and rapidly growing proportion of the population and because aging is a process universal to most of the animal kingdom. Epigenetics has emerged as a crucial framework for studying aging as epigenetic pathways, often triggered by environmental stimuli, have been shown to be essential regulators of the aging process. In this perspective article, we delineate the connection between aging, epigenetics, and environmental exposures. We discuss why it is essential to consider age when researching how an organism interacts with its environment. We describe recent advances in understanding how the chemical environment affects aging and the gap in research on how age affects an organism's response to the environment. Finally, we highlight how model organisms and network approaches can help fill this crucial gap. Taken together, systemic changes that occur in the epigenome with age indicate that adult organisms cannot be treated as a homogeneous population and that there are discrete mechanisms modulating the aging epigenome that we do not yet understand.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个未被充分研究的维度:为什么在研究表观遗传-环境相互作用时需要考虑年龄。
我们生活在一个复杂的化学环境中,其中估计有35万种化学化合物或商业生产的混合物。大量文献表明,在早期发育过程中,生物体的表观基因组对环境中的化学物质特别敏感。人们不太了解的是基因-环境和表观遗传-环境的相互作用是如何随着年龄而变化的。这个问题是双向的:(1)环境中的化学物质如何影响衰老过程;(2)衰老如何影响生物体对化学环境的反应?研究基因-环境与年龄的相互作用尤为重要,因为在世界上许多地方,老年人在人口中所占的比例很大,而且增长迅速,而且衰老对大多数动物王国来说是一个普遍的过程。表观遗传学已成为研究衰老的重要框架,因为表观遗传途径通常由环境刺激触发,已被证明是衰老过程的重要调节因子。在这篇前瞻性文章中,我们描述了衰老、表观遗传学和环境暴露之间的联系。我们讨论了为什么在研究生物体如何与其环境相互作用时考虑年龄是必要的。我们描述了了解化学环境如何影响衰老的最新进展,以及年龄如何影响生物体对环境的反应的研究差距。最后,我们强调了模式生物和网络方法如何帮助填补这一关键空白。综上所述,表观基因组随着年龄的增长而发生的系统性变化表明,成年生物体不能被视为一个同质的群体,并且存在我们尚不了解的调节衰老表观基因组的离散机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Epigenetics Insights
Epigenetics Insights GENETICS & HEREDITY-
CiteScore
5.10
自引率
0.00%
发文量
10
审稿时长
8 weeks
期刊最新文献
Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Circular RNA in Multiple Sclerosis: Pathogenicity and Potential Biomarker Development: A Systematic Review. Associations Between Epigenetic Age Acceleration and microRNA Expression Among U.S. Firefighters. Subacute and Chronic Spinal Cord Injury: A Scoping Review of Epigenetics and Secondary Health Conditions. DNA Methylation in Cancer: Epigenetic View of Dietary and Lifestyle Factors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1