Unfolding the Role of Splicing Factors and RNA Debranching in AID Mediated Antibody Diversification.

IF 4.3 4区 医学 Q2 IMMUNOLOGY International Reviews of Immunology Pub Date : 2021-01-01 Epub Date: 2020-09-14 DOI:10.1080/08830185.2020.1815725
Ankit Jaiswal, Amit Kumar Singh, Anubhav Tamrakar, Prashant Kodgire
{"title":"Unfolding the Role of Splicing Factors and RNA Debranching in AID Mediated Antibody Diversification.","authors":"Ankit Jaiswal,&nbsp;Amit Kumar Singh,&nbsp;Anubhav Tamrakar,&nbsp;Prashant Kodgire","doi":"10.1080/08830185.2020.1815725","DOIUrl":null,"url":null,"abstract":"<p><p>Activated B-cells diversify their antibody repertoire via somatic hypermutation (SHM) and class switch recombination (CSR). SHM is restricted to the variable region, whereas, CSR is confined to the constant region of immunoglobulin (<i>Ig</i>) genes. Activation-induced cytidine deaminase (AID) is a crucial player in the diversification of antibodies in the activated B-cell. AID catalyzes the deamination of cytidine (C) into uracil (U) at <i>Ig</i> genes. Subsequently, low fidelity repair of U:G mismatches may lead to mutations. Transcription is essential for the AID action, as it provides a transient single-strand DNA substrate. Since splicing is a co-transcriptional event, various splicing factors or regulators influence the transcription. Numerous splicing factors are known to regulate the AID targeting, function, <i>Ig</i> transcription, and AID splicing, which eventually influence antibody diversification processes. Splicing regulator SRSF1-3, a splicing isoform of serine arginine-rich splicing factor (SRSF1), and CTNNBL1, a spliceosome interacting factor, interact with AID and play a critical role in SHM. Likewise, a splicing regulator polypyrimidine tract binding protein-2 (PTBP2) and the debranching enzyme (DBR1) debranches primary switch transcripts which later forms G-quadruplex structures, and the S region guide RNAs direct AID to S region DNA. Moreover, AID shows several alternate splicing isoforms, like AID devoid of exon-4 (AIDΔE4) that is expressed in various pathological conditions. Interestingly, RBM5, a splicing regulator, is responsible for the skipping of AID exon 4. In this review, we discuss the role and significance of splicing factors in the AID mediated antibody diversification.</p>","PeriodicalId":14333,"journal":{"name":"International Reviews of Immunology","volume":"40 4","pages":"289-306"},"PeriodicalIF":4.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08830185.2020.1815725","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Reviews of Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08830185.2020.1815725","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Activated B-cells diversify their antibody repertoire via somatic hypermutation (SHM) and class switch recombination (CSR). SHM is restricted to the variable region, whereas, CSR is confined to the constant region of immunoglobulin (Ig) genes. Activation-induced cytidine deaminase (AID) is a crucial player in the diversification of antibodies in the activated B-cell. AID catalyzes the deamination of cytidine (C) into uracil (U) at Ig genes. Subsequently, low fidelity repair of U:G mismatches may lead to mutations. Transcription is essential for the AID action, as it provides a transient single-strand DNA substrate. Since splicing is a co-transcriptional event, various splicing factors or regulators influence the transcription. Numerous splicing factors are known to regulate the AID targeting, function, Ig transcription, and AID splicing, which eventually influence antibody diversification processes. Splicing regulator SRSF1-3, a splicing isoform of serine arginine-rich splicing factor (SRSF1), and CTNNBL1, a spliceosome interacting factor, interact with AID and play a critical role in SHM. Likewise, a splicing regulator polypyrimidine tract binding protein-2 (PTBP2) and the debranching enzyme (DBR1) debranches primary switch transcripts which later forms G-quadruplex structures, and the S region guide RNAs direct AID to S region DNA. Moreover, AID shows several alternate splicing isoforms, like AID devoid of exon-4 (AIDΔE4) that is expressed in various pathological conditions. Interestingly, RBM5, a splicing regulator, is responsible for the skipping of AID exon 4. In this review, we discuss the role and significance of splicing factors in the AID mediated antibody diversification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
剪接因子和RNA脱支在AID介导的抗体分化中的作用。
活化的b细胞通过体细胞超突变(SHM)和类开关重组(CSR)使其抗体库多样化。SHM局限于可变区,而CSR局限于免疫球蛋白(Ig)基因的恒定区。激活诱导胞苷脱氨酶(AID)在活化的b细胞抗体的多样化中起着至关重要的作用。AID在Ig基因上催化胞苷(C)脱氨成尿嘧啶(U)。随后,U:G错配的低保真度修复可能导致突变。转录对于AID的作用是必不可少的,因为它提供了一个短暂的单链DNA底物。由于剪接是一个共转录事件,各种剪接因子或调节因子影响转录。已知有许多剪接因子调节AID靶向、功能、Ig转录和AID剪接,最终影响抗体多样化过程。剪接调节因子SRSF1-3是富含丝氨酸精氨酸剪接因子(SRSF1)的剪接异构体,CTNNBL1是剪接体相互作用因子,它们与AID相互作用并在SHM中发挥关键作用。同样,剪接调节剂多嘧啶束结合蛋白-2 (PTBP2)和去分支酶(DBR1)去分支初级开关转录本,随后形成g -四重体结构,S区引导rna直接AID到S区DNA。此外,AID显示出几种不同的剪接异构体,如缺乏在各种病理条件下表达的外显子4 (AIDΔE4)的AID。有趣的是,剪接调节因子RBM5负责AID外显子4的跳过。在这篇综述中,我们讨论剪接因子在AID介导的抗体分化中的作用和意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
4.00%
发文量
24
期刊介绍: This review journal provides the most current information on basic and translational research in immunology and related fields. In addition to invited reviews, the journal accepts for publication articles and editorials on relevant topics proposed by contributors. Each issue of International Reviews of Immunology contains both solicited and unsolicited review articles, editorials, and ''In-this-Issue'' highlights. The journal also hosts reviews that position the authors'' original work relative to advances in a given field, bridging the gap between annual reviews and the original research articles. This review series is relevant to all immunologists, molecular biologists, microbiologists, translational scientists, industry researchers, and physicians who work in basic and clinical immunology, inflammatory and allergic diseases, vaccines, and additional topics relevant to medical research and drug development that connect immunology to disciplines such as oncology, cardiovascular disease, and metabolic disorders. Covered in International Reviews of Immunology: Basic and developmental immunology (innate and adaptive immunity; inflammation; and tumor and microbial immunology); Clinical research (mechanisms of disease in man pertaining to infectious diseases, autoimmunity, allergy, oncology / immunology); and Translational research (relevant to biomarkers, diagnostics, vaccines, and drug development).
期刊最新文献
Retraction. Retraction. Recurrent respiratory papillomatosis: Immunological mechanisms involved in recurrence. The NLRP3 inflammasome: Mechanisms of activation, regulation, and role in diseases. Transforming growth factor-β in tumor microenvironment: Understanding its impact on monocytes and macrophages for its targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1