Design of dual hormone blood glucose therapy and comparison with single hormone using MPC algorithm

IF 1.9 4区 生物学 Q4 CELL BIOLOGY IET Systems Biology Pub Date : 2020-09-15 DOI:10.1049/iet-syb.2020.0053
Cifha Crecil Dias, Surekha Kamath, Sudha Vidyasagar
{"title":"Design of dual hormone blood glucose therapy and comparison with single hormone using MPC algorithm","authors":"Cifha Crecil Dias,&nbsp;Surekha Kamath,&nbsp;Sudha Vidyasagar","doi":"10.1049/iet-syb.2020.0053","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The complete automated control and delivery of insulin and glucagon in type 1 diabetes is the developing technology for artificial pancreas. This improves the quality of life of a diabetic patient with the precise infusion. The amount of infusion of these hormones is controlled using a control algorithm, which has the prediction property. The control algorithm model predictive control (MPC) predicts one step ahead and infuses the hormones continuously according to the necessity for the regulation of blood glucose. In this research, the authors propose a MPC control algorithm, which is novel for a dual hormone infusion, for a mathematical model such as Sorenson model, and compare it with the insulin alone or single hormone infusion developed with MPC. Since they aim for complete automatic control and regulation, unmeasured disturbances at a random time are integrated and the performance evaluation is projected through statistical analysis. The blood glucose risk index (BGRI) and control variability grid analysis (CVGA) plot gives the additional evaluation for the comparative results of the two controllers claiming 88% performance by dual hormone evaluated through CVGA plot and 2.05 mg/dl average tracking error, 2.20 BGRI. The MPC developed for dual hormone significantly performs better and the time spent in normal glycaemia is longer while eliminating the risk of hyperglycaemia and hypoglycaemia.</p>\n </div>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2020-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687303/pdf/SYB2-14-241.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0053","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The complete automated control and delivery of insulin and glucagon in type 1 diabetes is the developing technology for artificial pancreas. This improves the quality of life of a diabetic patient with the precise infusion. The amount of infusion of these hormones is controlled using a control algorithm, which has the prediction property. The control algorithm model predictive control (MPC) predicts one step ahead and infuses the hormones continuously according to the necessity for the regulation of blood glucose. In this research, the authors propose a MPC control algorithm, which is novel for a dual hormone infusion, for a mathematical model such as Sorenson model, and compare it with the insulin alone or single hormone infusion developed with MPC. Since they aim for complete automatic control and regulation, unmeasured disturbances at a random time are integrated and the performance evaluation is projected through statistical analysis. The blood glucose risk index (BGRI) and control variability grid analysis (CVGA) plot gives the additional evaluation for the comparative results of the two controllers claiming 88% performance by dual hormone evaluated through CVGA plot and 2.05 mg/dl average tracking error, 2.20 BGRI. The MPC developed for dual hormone significantly performs better and the time spent in normal glycaemia is longer while eliminating the risk of hyperglycaemia and hypoglycaemia.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用MPC算法设计双激素血糖治疗方案并与单激素比较
1型糖尿病患者胰岛素和胰高血糖素的完全自动化控制和输送是人工胰腺的发展方向。这提高了精确输注糖尿病患者的生活质量。这些激素的输注量是通过一种具有预测特性的控制算法来控制的。控制算法模型预测控制(MPC)提前一步预测,并根据血糖调节的需要连续注入激素。本文针对Sorenson模型等数学模型,提出了一种新颖的双激素输注的MPC控制算法,并将其与使用MPC开发的胰岛素单独输注或单激素输注进行了比较。由于它们的目标是完全自动控制和调节,因此集成了随机时间的未测量干扰,并通过统计分析预测了性能评估。血糖风险指数(BGRI)和控制变异性网格分析(CVGA)图对两种控制者的比较结果进行了额外的评价,通过CVGA图评估双激素的效果为88%,平均跟踪误差为2.05 mg/dl, 2.20 BGRI。针对双激素开发的MPC显着表现更好,正常血糖持续时间更长,同时消除了高血糖和低血糖的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
期刊最新文献
iGATTLDA: Integrative graph attention and transformer-based model for predicting lncRNA-Disease associations. A tumour-associated macrophage-based signature for deciphering prognosis and immunotherapy response in prostate cancer. Identification and analysis of epithelial-mesenchymal transition-related key long non-coding RNAs in hypospadias Revealing the potential role of hub metabolism-related genes and their correlation with immune cells in acute ischemic stroke Gene signatures of endoplasmic reticulum stress and mitophagy for prognostic risk prediction in lung adenocarcinoma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1