MicroRNA-203 inhibits epithelial-mesenchymal transition, migration, and invasion of renal cell carcinoma cells via the inactivation of the PI3K/AKT signaling pathway by inhibiting CAV1.
{"title":"MicroRNA-203 inhibits epithelial-mesenchymal transition, migration, and invasion of renal cell carcinoma cells via the inactivation of the PI3K/AKT signaling pathway by inhibiting CAV1.","authors":"Ning Han, Hai Li, Hui Wang","doi":"10.1080/19336918.2020.1827665","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aimed to evaluate the underlying mechanism of microRNA-203 (miR-203) in renal cell carcinoma (RCC) involving the PI3K/AKT signaling pathway. The results revealed downregulated miR-203 and upregulated CAV1 in RCC tissues. Upregulated miR-203 and downregulated CAV1 increased E-cadherin expression and cell apoptosis, decreased β-catenin and N-cadherin expression and cell proliferation, migration and invasion, and blocked cell cycle entry. CAV1, a target gene of miR-203, decreased by up-regulated miR-203, and silencing CAV1 led to the inactivation of PI3K/AKT signaling pathway. In conclusion, our findings suggested that miR-203-mediated direct suppression of CAV1 inhibits EMT of RCC cells via inactivation of the PI3K/AKT signaling pathway.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19336918.2020.1827665","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336918.2020.1827665","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 9
Abstract
The present study aimed to evaluate the underlying mechanism of microRNA-203 (miR-203) in renal cell carcinoma (RCC) involving the PI3K/AKT signaling pathway. The results revealed downregulated miR-203 and upregulated CAV1 in RCC tissues. Upregulated miR-203 and downregulated CAV1 increased E-cadherin expression and cell apoptosis, decreased β-catenin and N-cadherin expression and cell proliferation, migration and invasion, and blocked cell cycle entry. CAV1, a target gene of miR-203, decreased by up-regulated miR-203, and silencing CAV1 led to the inactivation of PI3K/AKT signaling pathway. In conclusion, our findings suggested that miR-203-mediated direct suppression of CAV1 inhibits EMT of RCC cells via inactivation of the PI3K/AKT signaling pathway.