{"title":"Protocol: Adeno-Associated Virus-Mediated Gene Transfer in Ex Vivo Cultured Embryonic Mammary Gland.","authors":"Qiang Lan, Marja L Mikkola","doi":"10.1007/s10911-020-09461-4","DOIUrl":null,"url":null,"abstract":"<p><p>Branching morphogenesis of the murine mammary gland starts during late embryogenesis. It is regulated by the signals emanating both from the epithelium and the mesenchyme, yet the molecular mechanisms regulating this process remain poorly understood. We have previously developed a unique whole organ culture technique for embryonic mammary glands, which provides a powerful tool to monitor and manipulate branching morphogenesis ex vivo. Nowadays, RNA sequencing and other transcriptional profiling techniques provide robust methods to identify components of gene regulatory networks driving branching morphogenesis. However, validation of the candidate genes still mainly depends on the use of the transgenic mouse models, especially in mammary gland studies. By comparing different serotypes of recombinant adeno-associated virus (rAAVs), we found out that rAAVs provide sufficient efficiency for gene transfer with different tissue preferences depending on the serotypes of the virus. AAV-2 and AAV-8 preferentially target epithelial and mesenchymal compartments, respectively, while AAV-9 infects both tissues. Here, we describe a protocol for AAV-mediated gene transfer in ex vivo cultured murine embryonic mammary gland facilitating gene function studies on mammary gland branching morphogenesis.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"25 4","pages":"409-416"},"PeriodicalIF":3.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7960627/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammary Gland Biology and Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10911-020-09461-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Branching morphogenesis of the murine mammary gland starts during late embryogenesis. It is regulated by the signals emanating both from the epithelium and the mesenchyme, yet the molecular mechanisms regulating this process remain poorly understood. We have previously developed a unique whole organ culture technique for embryonic mammary glands, which provides a powerful tool to monitor and manipulate branching morphogenesis ex vivo. Nowadays, RNA sequencing and other transcriptional profiling techniques provide robust methods to identify components of gene regulatory networks driving branching morphogenesis. However, validation of the candidate genes still mainly depends on the use of the transgenic mouse models, especially in mammary gland studies. By comparing different serotypes of recombinant adeno-associated virus (rAAVs), we found out that rAAVs provide sufficient efficiency for gene transfer with different tissue preferences depending on the serotypes of the virus. AAV-2 and AAV-8 preferentially target epithelial and mesenchymal compartments, respectively, while AAV-9 infects both tissues. Here, we describe a protocol for AAV-mediated gene transfer in ex vivo cultured murine embryonic mammary gland facilitating gene function studies on mammary gland branching morphogenesis.
期刊介绍:
Journal of Mammary Gland Biology and Neoplasia is the leading Journal in the field of mammary gland biology that provides researchers within and outside the field of mammary gland biology with an integrated source of information pertaining to the development, function, and pathology of the mammary gland and its function.
Commencing in 2015, the Journal will begin receiving and publishing a combination of reviews and original, peer-reviewed research. The Journal covers all topics related to the field of mammary gland biology, including mammary development, breast cancer biology, lactation, and milk composition and quality. The environmental, endocrine, nutritional, and molecular factors regulating these processes is covered, including from a comparative biology perspective.