Pub Date : 2024-11-08DOI: 10.1007/s10911-024-09571-3
J R de la Haba-Rodríguez, P Mínguez, F Rojo, M Martín, E Alba, S Servitja, A Prat, J A Pérez-Fidalgo, J Gavilá, C Morales, A Rodriguez-Lescure, C Herrero, R Peña-Enriquez, J Herranz, C Hernando, A Hernández-Blanquisett, S Guil-Luna, M T Martinez, S Blanch, R Caballero, N Martín, M Pollán, A Guerrero-Zotano, B Bermejo
Gestational breast cancer (GBC), defined as breast cancer (BC) diagnosed during pregnancy or the first-year post-partum, accounts for 6-15% of BC cases in women aged 20-44 years. GBC has worse prognosis than non-GBC, but reasons behind are not clear. The GEICAM/2012-03 Study (Molecular Characterization of Gestational Breast Cancer) is a multicenter prospective/retrospective observational registry of patients diagnosed with GBC. From November 2014 to June 2015 seventy patients diagnosed with GBC were included in the study, 30 diagnosed during pregnancy and 40 after delivery. Our current study was aimed to explore differences in epidemiological, clinico-pathological and gene expression features of GBC tumors, from the GEICAM/2012-03 Study, compared to non-GBC tumors from patients of similar age (< 43 years) from six different GEICAM studies, used as non- GBC control population. As per the main objective, the study found multiple differences showing GBC tumors as a different biological entity. GBC showed a more aggressive biology, with higher Ki67 levels, higher incidence of breast and/or ovarian cancer family history, and germline deleterious BRCA1/2 mutations, and are enriched in basal-like intrinsic subtype. GBC patients showed a lower number of tumor infiltrating lymphocytes, while specific genetic signatures highlight differences in GBC´s distinctive transcriptome. Our study shows that GBC is potentially a clinically and molecularly different entity, with specific epidemiological, clinical, and histological features, as well as a distinctive altered immune state and genetic signature. Nevertheless, further studies are needed to better understand the biology of GBC and to identify new targets against which develop new, more effective, targeted therapies.
妊娠期乳腺癌(GBC)是指在怀孕期间或产后第一年诊断出的乳腺癌(BC),占 20-44 岁女性 BC 病例的 6-15%。与非妊娠期乳腺癌相比,妊娠期乳腺癌的预后较差,但其背后的原因尚不清楚。GEICAM/2012-03研究(妊娠期乳腺癌的分子特征)是一项多中心前瞻性/回顾性观察登记,对象是确诊为妊娠期乳腺癌的患者。2014年11月至2015年6月,70名确诊为GBC的患者被纳入该研究,其中30人在孕期确诊,40人在产后确诊。我们目前的研究旨在探讨GEICAM/2012-03研究中GBC肿瘤的流行病学、临床病理学和基因表达特征与年龄相仿的非GBC肿瘤的差异。
{"title":"Gestational breast cancer: distinctive molecular and clinico-epidemiological features.","authors":"J R de la Haba-Rodríguez, P Mínguez, F Rojo, M Martín, E Alba, S Servitja, A Prat, J A Pérez-Fidalgo, J Gavilá, C Morales, A Rodriguez-Lescure, C Herrero, R Peña-Enriquez, J Herranz, C Hernando, A Hernández-Blanquisett, S Guil-Luna, M T Martinez, S Blanch, R Caballero, N Martín, M Pollán, A Guerrero-Zotano, B Bermejo","doi":"10.1007/s10911-024-09571-3","DOIUrl":"10.1007/s10911-024-09571-3","url":null,"abstract":"<p><p>Gestational breast cancer (GBC), defined as breast cancer (BC) diagnosed during pregnancy or the first-year post-partum, accounts for 6-15% of BC cases in women aged 20-44 years. GBC has worse prognosis than non-GBC, but reasons behind are not clear. The GEICAM/2012-03 Study (Molecular Characterization of Gestational Breast Cancer) is a multicenter prospective/retrospective observational registry of patients diagnosed with GBC. From November 2014 to June 2015 seventy patients diagnosed with GBC were included in the study, 30 diagnosed during pregnancy and 40 after delivery. Our current study was aimed to explore differences in epidemiological, clinico-pathological and gene expression features of GBC tumors, from the GEICAM/2012-03 Study, compared to non-GBC tumors from patients of similar age (< 43 years) from six different GEICAM studies, used as non- GBC control population. As per the main objective, the study found multiple differences showing GBC tumors as a different biological entity. GBC showed a more aggressive biology, with higher Ki67 levels, higher incidence of breast and/or ovarian cancer family history, and germline deleterious BRCA1/2 mutations, and are enriched in basal-like intrinsic subtype. GBC patients showed a lower number of tumor infiltrating lymphocytes, while specific genetic signatures highlight differences in GBC´s distinctive transcriptome. Our study shows that GBC is potentially a clinically and molecularly different entity, with specific epidemiological, clinical, and histological features, as well as a distinctive altered immune state and genetic signature. Nevertheless, further studies are needed to better understand the biology of GBC and to identify new targets against which develop new, more effective, targeted therapies.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"18"},"PeriodicalIF":4.3,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549163/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-16DOI: 10.1007/s10911-024-09570-4
Maia N Machiela, Russell C Hovey
Thymidine analogs such as ethynyl deoxyuridine (EdU) or bromodeoxyuridine (BrdU) can be used to label mitosis of mammary epithelial cells (MEC) and to quantify their proliferation. However, labeling cells in larger animals requires considerable amounts of chemical that can be costly and hazardous. We developed a strategy to infuse EdU into the mammary glands of ewes to directly label mitotic MEC. First, each udder half of nulliparous ewes (n = 2) received an intramammary infusion of one of four different concentrations of EdU (0, 0.1, 1.0 or 10 mM) which was compared to BrdU IV (5 mg/kg) 24 h later. Tissues were analyzed by immunofluorescent histochemistry to detect EdU, BrdU, and total MEC. Of the EdU doses tested, 10 mM EdU yielded the greatest labeling index, while a proportion of MEC were labeled by both EdU and BrdU. We next sought to establish whether intramammary labeling could detect the induction of mitosis after exposure to exogenous estrogen and progesterone (E + P). We first infused EdU (10 mM) into the right udder half of ewes (n = 6) at t 0, followed by thymidine (100 mM) 24 h later to prevent further labeling. Three ewes were then administered E + P for 5 d, while n = 3 ewes served as controls. On d 5, EdU was infused into the left udder half of all mammary glands alongside BrdU IV (5 mg/kg). By the time of necropsy 24 h later an average MEC labeling index of 2.9% resulted from EdU delivered at t 0. In the left half of the udder on d 5, CON glands had a final EdU labeling index of 3.4% while glands exposed to E + P had a labeling index of 4.6% (p = 0.05). The corresponding degree of labeling with BrdU was 5.6% in CON glands, and 12% following E + P (p < 0.001). Our findings reveal that intramammary labeling is an efficient and cost-effective method for single- and dual-labeling of cell division in the mammary glands.
胸苷类似物(如乙炔基脱氧尿苷(EdU)或溴脱氧尿苷(BrdU))可用于标记乳腺上皮细胞(MEC)的有丝分裂,并对其增殖进行量化。然而,在大型动物体内标记细胞需要大量的化学物质,成本高且危险。我们开发了一种策略,将 EdU 注入母羊乳腺,直接标记有丝分裂的 MEC。首先,将四种不同浓度的 EdU(0、0.1、1.0 或 10 mM)中的一种注入空怀母羊(n = 2)的乳房内,24 小时后将其与 BrdU IV(5 mg/kg)进行比较。组织通过免疫荧光组织化学分析来检测 EdU、BrdU 和总 MEC。在测试的 EdU 剂量中,10 mM EdU 的标记指数最高,而一部分 MEC 同时被 EdU 和 BrdU 标记。接下来,我们试图确定乳腺内标记是否能检测暴露于外源性雌激素和孕酮(E+P)后有丝分裂的诱导。我们首先在t 0时将EdU(10 mM)注入母羊(n = 6)的右半乳房,然后在24小时后注入胸腺嘧啶(100 mM)以防止进一步标记。然后给 3 只母羊注射 E + P 5 d,n = 3 只母羊作为对照组。第 5 天,将 EdU 注入所有乳腺的左半乳房,同时静脉注射 BrdU(5 毫克/千克)。第 5 天,在乳房左半部,对照组腺体的最终 EdU 标记指数为 3.4%,而暴露于 E + P 的腺体的标记指数为 4.6%(p = 0.05)。CON腺体相应的BrdU标记指数为5.6%,而E+P后为12%(p = 0.05)。
{"title":"Intramammary Labeling of Epithelial Cell Division.","authors":"Maia N Machiela, Russell C Hovey","doi":"10.1007/s10911-024-09570-4","DOIUrl":"https://doi.org/10.1007/s10911-024-09570-4","url":null,"abstract":"<p><p>Thymidine analogs such as ethynyl deoxyuridine (EdU) or bromodeoxyuridine (BrdU) can be used to label mitosis of mammary epithelial cells (MEC) and to quantify their proliferation. However, labeling cells in larger animals requires considerable amounts of chemical that can be costly and hazardous. We developed a strategy to infuse EdU into the mammary glands of ewes to directly label mitotic MEC. First, each udder half of nulliparous ewes (n = 2) received an intramammary infusion of one of four different concentrations of EdU (0, 0.1, 1.0 or 10 mM) which was compared to BrdU IV (5 mg/kg) 24 h later. Tissues were analyzed by immunofluorescent histochemistry to detect EdU, BrdU, and total MEC. Of the EdU doses tested, 10 mM EdU yielded the greatest labeling index, while a proportion of MEC were labeled by both EdU and BrdU. We next sought to establish whether intramammary labeling could detect the induction of mitosis after exposure to exogenous estrogen and progesterone (E + P). We first infused EdU (10 mM) into the right udder half of ewes (n = 6) at t 0, followed by thymidine (100 mM) 24 h later to prevent further labeling. Three ewes were then administered E + P for 5 d, while n = 3 ewes served as controls. On d 5, EdU was infused into the left udder half of all mammary glands alongside BrdU IV (5 mg/kg). By the time of necropsy 24 h later an average MEC labeling index of 2.9% resulted from EdU delivered at t 0. In the left half of the udder on d 5, CON glands had a final EdU labeling index of 3.4% while glands exposed to E + P had a labeling index of 4.6% (p = 0.05). The corresponding degree of labeling with BrdU was 5.6% in CON glands, and 12% following E + P (p < 0.001). Our findings reveal that intramammary labeling is an efficient and cost-effective method for single- and dual-labeling of cell division in the mammary glands.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"17"},"PeriodicalIF":3.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11485144/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142467904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-23DOI: 10.1007/s10911-024-09568-y
Ramiah Vickers, Weston Porter
Postpartum breast cancer (PPBC) is a unique subset of breast cancer, accounting for nearly half of the women diagnosed during their postpartum years. Mammary gland involution is widely regarded as being a key orchestrator in the initiation and progression of PPBC due to its unique wound-healing inflammatory signature. Here, we provide dialogue suggestive that lactation may also facilitate neoplastic development as a result of sterile inflammation. Immune cells are involved in all stages of postnatal mammary development. It has been proposed that the functions of these immune cells are partially directed by mammary epithelial cells (MECs) and the cytokines they produce. This suggests that a more niche area of exploration aimed at assessing activation of innate immune pathways within MECs could provide insight into immune cell contributions to the developing mammary gland. Immune cell contribution to pubertal development and mammary gland involution has been extensively studied; however, investigations into pregnancy and lactation remain limited. During pregnancy, the mammary gland undergoes dramatic expansion to prepare for lactation. As a result, MECs are susceptible to replicative stress. During lactation, mitochondria are pushed to capacity to fulfill the high energetic demands of producing milk. This replicative and metabolic stress, if unresolved, can elicit activation of innate immune pathways within differentiating MECs. In this review, we broadly discuss postnatal mammary development and current knowledge of immune cell contribution to each developmental stage, while also emphasizing a more unique area of study that will be beneficial in the discovery of novel therapeutic biomarkers of PPBC.
{"title":"Immune Cell Contribution to Mammary Gland Development.","authors":"Ramiah Vickers, Weston Porter","doi":"10.1007/s10911-024-09568-y","DOIUrl":"10.1007/s10911-024-09568-y","url":null,"abstract":"<p><p>Postpartum breast cancer (PPBC) is a unique subset of breast cancer, accounting for nearly half of the women diagnosed during their postpartum years. Mammary gland involution is widely regarded as being a key orchestrator in the initiation and progression of PPBC due to its unique wound-healing inflammatory signature. Here, we provide dialogue suggestive that lactation may also facilitate neoplastic development as a result of sterile inflammation. Immune cells are involved in all stages of postnatal mammary development. It has been proposed that the functions of these immune cells are partially directed by mammary epithelial cells (MECs) and the cytokines they produce. This suggests that a more niche area of exploration aimed at assessing activation of innate immune pathways within MECs could provide insight into immune cell contributions to the developing mammary gland. Immune cell contribution to pubertal development and mammary gland involution has been extensively studied; however, investigations into pregnancy and lactation remain limited. During pregnancy, the mammary gland undergoes dramatic expansion to prepare for lactation. As a result, MECs are susceptible to replicative stress. During lactation, mitochondria are pushed to capacity to fulfill the high energetic demands of producing milk. This replicative and metabolic stress, if unresolved, can elicit activation of innate immune pathways within differentiating MECs. In this review, we broadly discuss postnatal mammary development and current knowledge of immune cell contribution to each developmental stage, while also emphasizing a more unique area of study that will be beneficial in the discovery of novel therapeutic biomarkers of PPBC.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"16"},"PeriodicalIF":3.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11343902/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142036052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-17DOI: 10.1007/s10911-024-09569-x
Kohei Saeki, Desiree Ha, Gregory Chang, Hitomi Mori, Ryohei Yoshitake, Xiwei Wu, Jinhui Wang, Yuan-Zhong Wang, Xiaoqiang Wang, Tony Tzeng, Hyun Jeong Shim, Susan L Neuhausen, Shiuan Chen
As both perimenopausal and menopausal periods are recognized critical windows of susceptibility for breast carcinogenesis, development of a physiologically relevant model has been warranted. The traditional ovariectomy model causes instant removal of the entire hormonal repertoire produced by the ovary, which does not accurately approximate human natural menopause with gradual transition. Here, we characterized the mammary glands of 4-vinylcyclohexene diepoxide (VCD)-treated animals at different time points, revealing that the model can provide the mammary glands with both perimenopausal and menopausal states. The perimenopausal gland showed moderate regression in ductal structure with no responsiveness to external hormones, while the menopausal gland showed severe regression with hypersensitivity to hormones. Leveraging the findings on the VCD model, effects of a major endocrine disruptor (polybrominated diphenyl ethers, PBDEs) on the mammary gland were examined during and after menopausal transition, with the two exposure modes; low-dose, chronic (environmental) and high-dose, subacute (experimental). All conditions of PBDE exposure did not augment or compromise the macroscopic ductal reorganization resulting from menopausal transition and/or hormonal treatments. Single-cell RNA sequencing revealed that the experimental PBDE exposure during the post-menopausal period caused specific transcriptomic changes in the non-epithelial compartment such as Errfi1 upregulation in fibroblasts. The environmental PBDE exposure resulted in similar transcriptomic changes to a lesser extent. In summary, the VCD mouse model provides both perimenopausal and menopausal windows of susceptibility for the breast cancer research community. PBDEs, including all tested models, may affect the post-menopausal gland including impacts on the non-epithelial compartments.
{"title":"Perimenopausal and Menopausal Mammary Glands In A 4-Vinylcyclohexene Diepoxide Mouse Model.","authors":"Kohei Saeki, Desiree Ha, Gregory Chang, Hitomi Mori, Ryohei Yoshitake, Xiwei Wu, Jinhui Wang, Yuan-Zhong Wang, Xiaoqiang Wang, Tony Tzeng, Hyun Jeong Shim, Susan L Neuhausen, Shiuan Chen","doi":"10.1007/s10911-024-09569-x","DOIUrl":"10.1007/s10911-024-09569-x","url":null,"abstract":"<p><p>As both perimenopausal and menopausal periods are recognized critical windows of susceptibility for breast carcinogenesis, development of a physiologically relevant model has been warranted. The traditional ovariectomy model causes instant removal of the entire hormonal repertoire produced by the ovary, which does not accurately approximate human natural menopause with gradual transition. Here, we characterized the mammary glands of 4-vinylcyclohexene diepoxide (VCD)-treated animals at different time points, revealing that the model can provide the mammary glands with both perimenopausal and menopausal states. The perimenopausal gland showed moderate regression in ductal structure with no responsiveness to external hormones, while the menopausal gland showed severe regression with hypersensitivity to hormones. Leveraging the findings on the VCD model, effects of a major endocrine disruptor (polybrominated diphenyl ethers, PBDEs) on the mammary gland were examined during and after menopausal transition, with the two exposure modes; low-dose, chronic (environmental) and high-dose, subacute (experimental). All conditions of PBDE exposure did not augment or compromise the macroscopic ductal reorganization resulting from menopausal transition and/or hormonal treatments. Single-cell RNA sequencing revealed that the experimental PBDE exposure during the post-menopausal period caused specific transcriptomic changes in the non-epithelial compartment such as Errfi1 upregulation in fibroblasts. The environmental PBDE exposure resulted in similar transcriptomic changes to a lesser extent. In summary, the VCD mouse model provides both perimenopausal and menopausal windows of susceptibility for the breast cancer research community. PBDEs, including all tested models, may affect the post-menopausal gland including impacts on the non-epithelial compartments.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"15"},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141626969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-16DOI: 10.1007/s10911-024-09567-z
Mia Nuckhir, David Withey, Sara Cabral, Hannah Harrison, Robert B Clarke
Metastatic spread of tumour cells to tissues and organs around the body is the most frequent cause of death from breast cancer. This has been modelled mainly using mouse models such as syngeneic mammary cancer or human in mouse xenograft models. These have limitations for modelling human disease progression and cannot easily be used for investigation of drug resistance and novel therapy screening. To complement these approaches, advances are being made in ex vivo and 3D in vitro models, which are becoming progressively better at reliably replicating the tumour microenvironment and will in the future facilitate drug development and screening. These approaches include microfluidics, organ-on-a-chip and use of advanced biomaterials. The relevant tissues to be modelled include those that are frequent and clinically important sites of metastasis such as bone, lung, brain, liver for invasive ductal carcinomas and a distinct set of common metastatic sites for lobular breast cancer. These sites all have challenges to model due to their unique cellular compositions, structure and complexity. The models, particularly in vivo, provide key information on the intricate interactions between cancer cells and the native tissue, and will guide us in producing specific therapies that are helpful in different context of metastasis.
{"title":"State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We?","authors":"Mia Nuckhir, David Withey, Sara Cabral, Hannah Harrison, Robert B Clarke","doi":"10.1007/s10911-024-09567-z","DOIUrl":"10.1007/s10911-024-09567-z","url":null,"abstract":"<p><p>Metastatic spread of tumour cells to tissues and organs around the body is the most frequent cause of death from breast cancer. This has been modelled mainly using mouse models such as syngeneic mammary cancer or human in mouse xenograft models. These have limitations for modelling human disease progression and cannot easily be used for investigation of drug resistance and novel therapy screening. To complement these approaches, advances are being made in ex vivo and 3D in vitro models, which are becoming progressively better at reliably replicating the tumour microenvironment and will in the future facilitate drug development and screening. These approaches include microfluidics, organ-on-a-chip and use of advanced biomaterials. The relevant tissues to be modelled include those that are frequent and clinically important sites of metastasis such as bone, lung, brain, liver for invasive ductal carcinomas and a distinct set of common metastatic sites for lobular breast cancer. These sites all have challenges to model due to their unique cellular compositions, structure and complexity. The models, particularly in vivo, provide key information on the intricate interactions between cancer cells and the native tissue, and will guide us in producing specific therapies that are helpful in different context of metastasis.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"14"},"PeriodicalIF":3.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141620138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1007/s10911-024-09565-1
Nika Heijmans, Katrin E Wiese, Jos Jonkers, Renée van Amerongen
Conflicting data exist as to how mammary epithelial cell proliferation changes during the reproductive cycle. To study the effect of endogenous hormone fluctuations on gene expression in the mouse mammary gland, we performed bulk RNAseq analyses of epithelial and stromal cell populations that were isolated either during puberty or at different stages of the adult virgin estrous cycle. Our data confirm prior findings that proliferative changes do not occur in every mouse in every cycle. We also show that during the estrous cycle the main gene expression changes occur in adipocytes and fibroblasts. Finally, we present a comprehensive overview of the Wnt gene expression landscape in different mammary gland cell types in pubertal and adult mice. This work contributes to understanding the effects of physiological hormone fluctuations and locally produced signaling molecules on gene expression changes in the mammary gland during the reproductive cycle and should be a useful resource for future studies investigating gene expression patterns in different cell types across different developmental timepoints.
{"title":"Transcriptomic Analysis of Pubertal and Adult Virgin Mouse Mammary Epithelial and Stromal Cell Populations.","authors":"Nika Heijmans, Katrin E Wiese, Jos Jonkers, Renée van Amerongen","doi":"10.1007/s10911-024-09565-1","DOIUrl":"10.1007/s10911-024-09565-1","url":null,"abstract":"<p><p>Conflicting data exist as to how mammary epithelial cell proliferation changes during the reproductive cycle. To study the effect of endogenous hormone fluctuations on gene expression in the mouse mammary gland, we performed bulk RNAseq analyses of epithelial and stromal cell populations that were isolated either during puberty or at different stages of the adult virgin estrous cycle. Our data confirm prior findings that proliferative changes do not occur in every mouse in every cycle. We also show that during the estrous cycle the main gene expression changes occur in adipocytes and fibroblasts. Finally, we present a comprehensive overview of the Wnt gene expression landscape in different mammary gland cell types in pubertal and adult mice. This work contributes to understanding the effects of physiological hormone fluctuations and locally produced signaling molecules on gene expression changes in the mammary gland during the reproductive cycle and should be a useful resource for future studies investigating gene expression patterns in different cell types across different developmental timepoints.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"13"},"PeriodicalIF":3.0,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141446364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-24DOI: 10.1007/s10911-024-09566-0
Raquel Nicotra, Catrin Lutz, Hendrik A Messal, Jos Jonkers
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
激素受体阳性(HR+)乳腺癌(BC)是全球妇女最常见的乳腺癌类型,占所有侵袭性病例的 70-80%。激素受体阳性乳腺癌患者通常接受内分泌治疗,但内在或获得性耐药性是一个常见问题,这使得激素受体阳性乳腺癌成为研究的热点。尽管如此,这种恶性肿瘤仍然缺乏足够的体外和体内模型来研究其发病和进展以及对内分泌治疗的反应和耐药性。目前还没有完全模拟人类疾病的小鼠模型,但大鼠乳腺肿瘤模型是克服这一限制的一个很有前途的替代方案。与小鼠相比,大鼠在乳腺结构、肿瘤病变的导管起源和激素依赖状态方面与人类更为相似。此外,大鼠可发生与人类 HR+ BC 相似的自发性或诱导性乳腺肿瘤。迄今为止,已建立了六种不同类型的 HR+ BC 大鼠模型。这些模型包括自发性模型、致癌物质诱导模型、移植模型、激素诱导模型、辐射诱导模型和基因工程大鼠乳腺肿瘤模型。每种模型在研究 HR+ BC 方面都有各自的优缺点和实用性。本综述全面概述了迄今为止已发表的所有模型。
{"title":"Rat Models of Hormone Receptor-Positive Breast Cancer.","authors":"Raquel Nicotra, Catrin Lutz, Hendrik A Messal, Jos Jonkers","doi":"10.1007/s10911-024-09566-0","DOIUrl":"10.1007/s10911-024-09566-0","url":null,"abstract":"<p><p>Hormone receptor-positive (HR<sup>+</sup>) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR<sup>+</sup> BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR<sup>+</sup> BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR<sup>+</sup> BC. To date, six different types of rat models of HR<sup>+</sup> BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR<sup>+</sup> BC. This review provides a comprehensive overview of all published models to date.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"12"},"PeriodicalIF":3.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11196369/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141442833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-18DOI: 10.1007/s10911-024-09563-3
Bethan Lloyd-Lewis, Michael E D'Angelo, Neve B Prowting, Bethan E Wiseman, Timothy J Sargeant, Christine J Watson
The transcription factor STAT3 is activated by multiple cytokines and other extrinsic factors. It plays a key role in immune and inflammatory responses and, when dysregulated, in tumourigenesis. STAT3 is also an indispensable mediator of the cell death process that occurs during post-lactational regression of the mammary gland, one of the most dramatic examples of physiological cell death in adult mammals. During this involution of the gland, STAT3 powerfully enhances the lysosomal system to efficiently remove superfluous milk-producing mammary epithelial cells via a lysosomal-mediated programmed cell death pathway. The lysosome is a membrane-enclosed cytoplasmic organelle that digests and recycles cellular waste, with an important role as a signalling centre that monitors cellular metabolism. Here, we describe key strategies for investigating the role of STAT3 in regulating lysosomal function using a mammary epithelial cell culture model system. These include protocols for lysosome enrichment and enzyme activity assays, in addition to microscopic analyses of the vesicular compartment in cell lines. Collectively, these approaches provide the tools to investigate multiple aspects of lysosome biogenesis and function, and to define both direct and indirect roles for STAT3.
{"title":"Methods for investigating STAT3 regulation of lysosomal function in mammary epithelial cells.","authors":"Bethan Lloyd-Lewis, Michael E D'Angelo, Neve B Prowting, Bethan E Wiseman, Timothy J Sargeant, Christine J Watson","doi":"10.1007/s10911-024-09563-3","DOIUrl":"10.1007/s10911-024-09563-3","url":null,"abstract":"<p><p>The transcription factor STAT3 is activated by multiple cytokines and other extrinsic factors. It plays a key role in immune and inflammatory responses and, when dysregulated, in tumourigenesis. STAT3 is also an indispensable mediator of the cell death process that occurs during post-lactational regression of the mammary gland, one of the most dramatic examples of physiological cell death in adult mammals. During this involution of the gland, STAT3 powerfully enhances the lysosomal system to efficiently remove superfluous milk-producing mammary epithelial cells via a lysosomal-mediated programmed cell death pathway. The lysosome is a membrane-enclosed cytoplasmic organelle that digests and recycles cellular waste, with an important role as a signalling centre that monitors cellular metabolism. Here, we describe key strategies for investigating the role of STAT3 in regulating lysosomal function using a mammary epithelial cell culture model system. These include protocols for lysosome enrichment and enzyme activity assays, in addition to microscopic analyses of the vesicular compartment in cell lines. Collectively, these approaches provide the tools to investigate multiple aspects of lysosome biogenesis and function, and to define both direct and indirect roles for STAT3.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"11"},"PeriodicalIF":2.5,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140957563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1007/s10911-024-09561-5
Laura J A Hardwick, Benjamin P Davies, Sara Pensa, Maedee Burge-Rogers, Claire Davies, André Figueiredo Baptista, Robert Knott, Ian S McCrone, Eleonora Po, Benjamin W Strugnell, Katie Waine, Paul Wood, Walid T Khaled, Huw D Summers, Paul Rees, John W Wills, Katherine Hughes
Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.
{"title":"In the Murine and Bovine Maternal Mammary Gland Signal Transducer and Activator of Transcription 3 is Activated in Clusters of Epithelial Cells around the Day of Birth.","authors":"Laura J A Hardwick, Benjamin P Davies, Sara Pensa, Maedee Burge-Rogers, Claire Davies, André Figueiredo Baptista, Robert Knott, Ian S McCrone, Eleonora Po, Benjamin W Strugnell, Katie Waine, Paul Wood, Walid T Khaled, Huw D Summers, Paul Rees, John W Wills, Katherine Hughes","doi":"10.1007/s10911-024-09561-5","DOIUrl":"10.1007/s10911-024-09561-5","url":null,"abstract":"<p><p>Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"10"},"PeriodicalIF":2.5,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140898621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-02DOI: 10.1007/s10911-024-09562-4
Anthony J Wilby, Sara Cabral, Nastaran Zoghi, Sacha J Howell, Gillian Farnie, Hannah Harrison
Improved screening and treatment have decreased breast cancer mortality, although incidence continues to rise. Women at increased risk of breast cancer can be offered risk reducing treatments, such as tamoxifen, but this has not been shown to reduce breast cancer mortality. New, more efficacious, risk-reducing agents are needed. The identification of novel candidates for prevention is hampered by a lack of good preclinical models. Current patient derived in vitro and in vivo models cannot fully recapitulate the complexities of the human tissue, lacking human extracellular matrix, stroma, and immune cells, all of which are known to influence therapy response. Here we describe a normal breast explant model utilising a tuneable hydrogel which maintains epithelial proliferation, hormone receptor expression, and residency of T cells and macrophages over 7 days. Unlike other organotypic tissue cultures which are often limited by hyper-proliferation, loss of hormone signalling, and short treatment windows (< 48h), our model shows that tissue remains viable over 7 days with none of these early changes. This offers a powerful and unique opportunity to model the normal breast and study changes in response to various risk factors, such as breast density and hormone exposure. Further validation of the model, using samples from patients undergoing preventive therapies, will hopefully confirm this to be a valuable tool, allowing us to test novel agents for breast cancer risk reduction preclinically.
筛查和治疗的改进降低了乳腺癌的死亡率,但发病率仍在继续上升。患乳腺癌风险增加的妇女可以接受降低风险的治疗,如他莫昔芬,但这并没有证明能降低乳腺癌死亡率。我们需要新的、更有效的降低风险的药物。由于缺乏良好的临床前模型,确定新的候选预防药物的工作受到了阻碍。目前源自患者的体外和体内模型不能完全再现人体组织的复杂性,缺乏细胞外基质、基质和免疫细胞,而所有这些都会影响治疗反应。在这里,我们描述了一种正常乳腺外植体模型,该模型利用可调水凝胶维持上皮增殖、激素受体表达以及 T 细胞和巨噬细胞驻留 7 天。与其他器官型组织培养不同的是,其他器官型组织培养通常受到过度增殖、激素信号缺失和治疗窗口期较短等因素的限制(例如,乳腺癌患者的乳腺上皮细胞和巨噬细胞在治疗过程中会受到激素信号缺失的影响)。
{"title":"A novel preclinical model of the normal human breast.","authors":"Anthony J Wilby, Sara Cabral, Nastaran Zoghi, Sacha J Howell, Gillian Farnie, Hannah Harrison","doi":"10.1007/s10911-024-09562-4","DOIUrl":"https://doi.org/10.1007/s10911-024-09562-4","url":null,"abstract":"<p><p>Improved screening and treatment have decreased breast cancer mortality, although incidence continues to rise. Women at increased risk of breast cancer can be offered risk reducing treatments, such as tamoxifen, but this has not been shown to reduce breast cancer mortality. New, more efficacious, risk-reducing agents are needed. The identification of novel candidates for prevention is hampered by a lack of good preclinical models. Current patient derived in vitro and in vivo models cannot fully recapitulate the complexities of the human tissue, lacking human extracellular matrix, stroma, and immune cells, all of which are known to influence therapy response. Here we describe a normal breast explant model utilising a tuneable hydrogel which maintains epithelial proliferation, hormone receptor expression, and residency of T cells and macrophages over 7 days. Unlike other organotypic tissue cultures which are often limited by hyper-proliferation, loss of hormone signalling, and short treatment windows (< 48h), our model shows that tissue remains viable over 7 days with none of these early changes. This offers a powerful and unique opportunity to model the normal breast and study changes in response to various risk factors, such as breast density and hormone exposure. Further validation of the model, using samples from patients undergoing preventive therapies, will hopefully confirm this to be a valuable tool, allowing us to test novel agents for breast cancer risk reduction preclinically.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":"29 1","pages":"9"},"PeriodicalIF":2.5,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140863123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}