{"title":"A Systematic Literature Review of the Successors of “NeuroEvolution of Augmenting Topologies”","authors":"Evgenia Papavasileiou;Jan Cornelis;Bart Jansen","doi":"10.1162/evco_a_00282","DOIUrl":null,"url":null,"abstract":"<para>NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a plethora of methods have been proposed that extend NEAT in different aspects. In this article, we present a systematic literature review (SLR) to list and categorize the methods succeeding NEAT. Our review protocol identified 232 papers by merging the findings of two major electronic databases. Applying criteria that determine the paper's relevance and assess its quality, resulted in 61 methods that are presented in this article. Our review article proposes a new categorization scheme of NEAT's successors into three clusters. NEAT-based methods are categorized based on 1) whether they consider issues specific to the search space or the fitness landscape, 2) whether they combine principles from NE and another domain, or 3) the particular properties of the evolved ANNs. The clustering supports researchers 1) understanding the current state of the art that will enable them, 2) exploring new research directions or 3) benchmarking their proposed method to the state of the art, if they are interested in comparing, and 4) positioning themselves in the domain or 5) selecting a method that is most appropriate for their problem.</para>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"29 1","pages":"1-73"},"PeriodicalIF":4.6000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9367091/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 28
Abstract
NeuroEvolution (NE) refers to a family of methods for optimizing Artificial Neural Networks (ANNs) using Evolutionary Computation (EC) algorithms. NeuroEvolution of Augmenting Topologies (NEAT) is considered one of the most influential algorithms in the field. Eighteen years after its invention, a plethora of methods have been proposed that extend NEAT in different aspects. In this article, we present a systematic literature review (SLR) to list and categorize the methods succeeding NEAT. Our review protocol identified 232 papers by merging the findings of two major electronic databases. Applying criteria that determine the paper's relevance and assess its quality, resulted in 61 methods that are presented in this article. Our review article proposes a new categorization scheme of NEAT's successors into three clusters. NEAT-based methods are categorized based on 1) whether they consider issues specific to the search space or the fitness landscape, 2) whether they combine principles from NE and another domain, or 3) the particular properties of the evolved ANNs. The clustering supports researchers 1) understanding the current state of the art that will enable them, 2) exploring new research directions or 3) benchmarking their proposed method to the state of the art, if they are interested in comparing, and 4) positioning themselves in the domain or 5) selecting a method that is most appropriate for their problem.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.