RETRACTED ARTICLE: Room-temperature superconductivity in a carbonaceous sulfur hydride

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2020-10-14 DOI:10.1038/s41586-020-2801-z
Elliot Snider, Nathan Dasenbrock-Gammon, Raymond McBride, Mathew Debessai, Hiranya Vindana, Kevin Vencatasamy, Keith V. Lawler, Ashkan Salamat, Ranga P. Dias
{"title":"RETRACTED ARTICLE: Room-temperature superconductivity in a carbonaceous sulfur hydride","authors":"Elliot Snider, Nathan Dasenbrock-Gammon, Raymond McBride, Mathew Debessai, Hiranya Vindana, Kevin Vencatasamy, Keith V. Lawler, Ashkan Salamat, Ranga P. Dias","doi":"10.1038/s41586-020-2801-z","DOIUrl":null,"url":null,"abstract":"One of the long-standing challenges in experimental physics is the observation of room-temperature superconductivity1,2. Recently, high-temperature conventional superconductivity in hydrogen-rich materials has been reported in several systems under high pressure3–5. An  important discovery leading to room-temperature superconductivity is the pressure-driven disproportionation of hydrogen sulfide (H2S) to H3S, with a confirmed transition temperature of 203 kelvin at 155 gigapascals3,6. Both H2S and CH4 readily mix with hydrogen to form guest–host structures at lower pressures7, and are of  comparable size at 4 gigapascals. By introducing methane at low pressures into the H2S + H2 precursor mixture for H3S, molecular exchange is allowed within a large assemblage of van der Waals solids that are hydrogen-rich with H2 inclusions; these guest–host structures become the building blocks of superconducting compounds at extreme conditions. Here we report superconductivity in a photochemically transformed carbonaceous sulfur hydride system, starting from elemental precursors, with a maximum superconducting transition temperature of 287.7 ± 1.2 kelvin (about 15 degrees Celsius) achieved at 267 ± 10 gigapascals. The superconducting state is observed over a broad pressure range in the diamond anvil cell, from 140 to 275 gigapascals, with a sharp upturn in transition temperature above 220 gigapascals. Superconductivity is established by the observation of zero resistance, a magnetic susceptibility of up to 190 gigapascals, and reduction of the transition temperature under an external magnetic field of up to 9 tesla, with an upper critical magnetic field of about 62 tesla according to the Ginzburg–Landau model at zero temperature. The light, quantum nature of hydrogen limits the structural and stoichiometric determination of the system by X-ray scattering techniques, but Raman spectroscopy is used to probe the chemical and structural transformations before metallization. The introduction of chemical tuning within our ternary system could enable the preservation of the properties of room-temperature superconductivity at lower pressures. Room-temperature superconductivity is observed in a photochemically synthesized ternary carbonaceous sulfur hydride system at 15 °C and 267 GPa.","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41586-020-2801-z","citationCount":"417","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-020-2801-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 417

Abstract

One of the long-standing challenges in experimental physics is the observation of room-temperature superconductivity1,2. Recently, high-temperature conventional superconductivity in hydrogen-rich materials has been reported in several systems under high pressure3–5. An  important discovery leading to room-temperature superconductivity is the pressure-driven disproportionation of hydrogen sulfide (H2S) to H3S, with a confirmed transition temperature of 203 kelvin at 155 gigapascals3,6. Both H2S and CH4 readily mix with hydrogen to form guest–host structures at lower pressures7, and are of  comparable size at 4 gigapascals. By introducing methane at low pressures into the H2S + H2 precursor mixture for H3S, molecular exchange is allowed within a large assemblage of van der Waals solids that are hydrogen-rich with H2 inclusions; these guest–host structures become the building blocks of superconducting compounds at extreme conditions. Here we report superconductivity in a photochemically transformed carbonaceous sulfur hydride system, starting from elemental precursors, with a maximum superconducting transition temperature of 287.7 ± 1.2 kelvin (about 15 degrees Celsius) achieved at 267 ± 10 gigapascals. The superconducting state is observed over a broad pressure range in the diamond anvil cell, from 140 to 275 gigapascals, with a sharp upturn in transition temperature above 220 gigapascals. Superconductivity is established by the observation of zero resistance, a magnetic susceptibility of up to 190 gigapascals, and reduction of the transition temperature under an external magnetic field of up to 9 tesla, with an upper critical magnetic field of about 62 tesla according to the Ginzburg–Landau model at zero temperature. The light, quantum nature of hydrogen limits the structural and stoichiometric determination of the system by X-ray scattering techniques, but Raman spectroscopy is used to probe the chemical and structural transformations before metallization. The introduction of chemical tuning within our ternary system could enable the preservation of the properties of room-temperature superconductivity at lower pressures. Room-temperature superconductivity is observed in a photochemically synthesized ternary carbonaceous sulfur hydride system at 15 °C and 267 GPa.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
被撤回的文章:碳质硫氢化物的室温超导性
观察室温超导现象是实验物理学长期面临的挑战之一1,2。最近,富氢材料中的高温常规超导现象在高压下的几个系统中得到了报道3-5。导致室温超导性的一个重要发现是硫化氢(H2S)在压力驱动下歧化为 H3S,在 155 千兆帕压力下的转变温度为 203 开尔文3,6。在较低的压力下,H2S 和 CH4 都很容易与氢气混合形成客体结构7,并且在 4 千兆帕斯卡时大小相当。通过在 H3S 的 H2S + H2 前体混合物中低压引入甲烷, 分子交换得以实现 在富含氢和 H2 夹杂的范德华固体大集合体中进行;这些客体结构在极端条件下成为超导化合物的构件。在这里,我们报告了一个从元素前体开始的光化学转化碳质硫氢化物系统的超导性,在 267 ± 10 千兆帕斯卡的温度下实现了 287.7 ± 1.2 开尔文(约 15 摄氏度)的最高超导转变温度。在金刚石砧室中,超导状态在从 140 到 275 千兆帕的广泛压力范围内被观测到,过渡温度在 220 千兆帕以上急剧上升。通过观察零电阻、高达 190 千兆帕斯卡的磁感应强度以及在高达 9 特斯拉的外部磁场下转变温度的降低,超导性得以确立,根据金兹堡-朗道模型,在零温度下的临界磁场上限约为 62 特斯拉。氢的轻量级性质限制了通过 X 射线散射技术确定系统的结构和化学计量,但拉曼光谱可用于探测金属化前的化学和结构转变。在我们的三元体系中引入化学调谐可以使室温超导特性在较低的压力下得以保持。在 15 °C 和 267 GPa 下,光化学合成的三元碳硫氢化物体系中观察到了室温超导性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
Why hasn’t deadly bird flu reached Australia yet? World-first therapy using donor cells sends autoimmune diseases into remission Mpox vaccine rollout begins in Africa: what will success look like? A spaceship punched an asteroid — we’re about to learn what came next Believe it or not, this lush landscape is Antarctica
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1