AUTOMATIC SCORING OF A NONWORD REPETITION TEST.

Meysam Asgari, Jan Van Santen, Katina Papadakis
{"title":"AUTOMATIC SCORING OF A NONWORD REPETITION TEST.","authors":"Meysam Asgari,&nbsp;Jan Van Santen,&nbsp;Katina Papadakis","doi":"10.1109/icmla.2017.0-143","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we explore the feasibility of speech-based techniques to automatically evaluate a nonword repetition (NWR) test. NWR tests, a useful marker for detecting language impairment, require repetition of pronounceable nonwords, such as \"D OY F\", presented aurally by an examiner or via a recording. Our proposed method leverages ASR techniques to first transcribe verbal responses. Second, it applies machine learning techniques to ASR output for predicting gold standard scores provided by speech and language pathologists. Our experimental results for a sample of 101 children (42 with autism spectrum disorders, or ASD; 18 with specific language impairment, or SLI; and 41 typically developed, or TD) show that the proposed approach is successful in predicting scores on this test, with averaged product-moment correlations of 0.74 and mean absolute error of 0.06 (on a observed score range from 0.34 to 0.97) between observed and predicted ratings.</p>","PeriodicalId":74528,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","volume":"2017 ","pages":"304-308"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/icmla.2017.0-143","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icmla.2017.0-143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/18 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we explore the feasibility of speech-based techniques to automatically evaluate a nonword repetition (NWR) test. NWR tests, a useful marker for detecting language impairment, require repetition of pronounceable nonwords, such as "D OY F", presented aurally by an examiner or via a recording. Our proposed method leverages ASR techniques to first transcribe verbal responses. Second, it applies machine learning techniques to ASR output for predicting gold standard scores provided by speech and language pathologists. Our experimental results for a sample of 101 children (42 with autism spectrum disorders, or ASD; 18 with specific language impairment, or SLI; and 41 typically developed, or TD) show that the proposed approach is successful in predicting scores on this test, with averaged product-moment correlations of 0.74 and mean absolute error of 0.06 (on a observed score range from 0.34 to 0.97) between observed and predicted ratings.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非单词重复测试的自动评分。
在这项研究中,我们探索了基于语音的技术来自动评估非单词重复(NWR)测试的可行性。NWR测试是一种检测语言障碍的有用标记,它要求重复可发音的非单词,如“D OY F”,由考官口头或通过录音呈现。我们提出的方法利用ASR技术首先转录口头反应。其次,它将机器学习技术应用于ASR输出,以预测语音和语言病理学家提供的黄金标准分数。我们对101名儿童样本的实验结果(42名患有自闭症谱系障碍,或ASD;18人患有特殊语言障碍(SLI);和41个典型开发,或TD)表明,所提出的方法在预测该测试的分数方面是成功的,平均积矩相关性为0.74,平均绝对误差为0.06(在观察到的分数范围为0.34至0.97)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis Face Mask Detection Model Using Convolutional Neural Network Breast Tumor Detection Using Efficient Machine Learning and Deep Learning Techniques Context-free Self-Conditioned GAN for Trajectory Forecasting Multiple Imputation via Generative Adversarial Network for High-dimensional Blockwise Missing Value Problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1