The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes.

Q4 Biochemistry, Genetics and Molecular Biology Results and Problems in Cell Differentiation Pub Date : 2020-01-01 DOI:10.1007/978-3-030-51849-3_11
Josselin Lupette, Eric Maréchal
{"title":"The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes.","authors":"Josselin Lupette,&nbsp;Eric Maréchal","doi":"10.1007/978-3-030-51849-3_11","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-030-51849-3_11","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-51849-3_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 2

Abstract

Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从细菌到真核生物的脂滴令人困惑的保存和多样化。
膜室是细胞从原核生物进化到真核生物的最迷人的标志之一,一些是保守的,另一些是通过一系列初级和次级内共生事件出现的。膜室包括系统限制细胞(细菌中的一个或两个膜,真核生物中的一个独特的质膜)和各种内部囊泡,亚球形,管状或网状细胞器。在真核生物中,内膜一方面包括一般的膜系统,这是一个动态网络,包括内质网、高尔基体、核膜等细胞器和质膜,它们通过直接的横向连接(如内质网和核外包膜之间)或通过囊泡运输间接连接。另一方面,半自主的细胞器,即线粒体和叶绿体,与内膜系统断开,并在细胞分裂后要求垂直传输。膜组织为脂质双分子层,其中包含蛋白质。其中一些膜的出芽导致所谓的脂滴(LDs)的形成,这些脂滴装载疏水分子,最明显的是三酰基甘油,在所有进化枝中都是保守的。真核生物进化的标志是通过初级内共生事件从革兰氏阳性细菌获得线粒体和简单质体,并在多次独立的次级内共生事件之后出现极其复杂的质体,统称为次级质体,由三到四个膜包围。目前对于生命之树中ld的进化还没有达成共识。保留了一些特征;其他国家则表现出惊人的多样化程度。在这里,我们总结了目前关于原核生物和真核生物中源自初级和次级内共生事件的脂滴的结构、动力学和多种功能的知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results and Problems in Cell Differentiation
Results and Problems in Cell Differentiation Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
1.90
自引率
0.00%
发文量
21
期刊介绍: Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.
期刊最新文献
Early Syncytialization of the Ovine Placenta Revisited. HIV-1 Induced Cell-to-Cell Fusion or Syncytium Formation. Mathematical Modeling of Virus-Mediated Syncytia Formation: Past Successes and Future Directions. Muscle Progenitor Cell Fusion in the Maintenance of Skeletal Muscle. Osteoclasts at Bone Remodeling: Order from Order.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1