Yiqun Q Ma, Wenying Wang, Matt Tivnan, Junyuan Li, Minghui Lu, Jin Zhang, Josh Star-Lack, Richard E Colbeth, Wojciech Zbijewski, J Webster Stayman
{"title":"High-Resolution Model-based Material Decomposition for Multi-Layer Flat-Panel Detectors.","authors":"Yiqun Q Ma, Wenying Wang, Matt Tivnan, Junyuan Li, Minghui Lu, Jin Zhang, Josh Star-Lack, Richard E Colbeth, Wojciech Zbijewski, J Webster Stayman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>In this work we compare a novel model-based material decomposition (MBMD) approach against a standard approach in high-resolution spectral CT using multi-layer flat-panel detectors. Physical experiments were conducted using a prototype dual-layer detector and a custom high-resolution iodine-enhanced line-pair phantom. Reconstructions were performed using three methods: traditional filtered back-projection (FBP) followed by image-domain decomposition, idealized MBMD with no blur modeling (iMBMD), and MBMD with system blur modeling (bMBMD). We find that both MBMD methods yielded higher resolution decompositions with lower noise than the FBP method, and that bMBMD further improves spatial resolution over iMBMD due to the additional blur modeling. These results demonstrate the advantages of MBMD in resolution performance and noise control over traditional methods for spectral CT. Model-based material decomposition hence has great potential in high-resolution spectral CT applications.</p>","PeriodicalId":90477,"journal":{"name":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","volume":"2020 ","pages":"62-64"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643886/pdf/nihms-1640716.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we compare a novel model-based material decomposition (MBMD) approach against a standard approach in high-resolution spectral CT using multi-layer flat-panel detectors. Physical experiments were conducted using a prototype dual-layer detector and a custom high-resolution iodine-enhanced line-pair phantom. Reconstructions were performed using three methods: traditional filtered back-projection (FBP) followed by image-domain decomposition, idealized MBMD with no blur modeling (iMBMD), and MBMD with system blur modeling (bMBMD). We find that both MBMD methods yielded higher resolution decompositions with lower noise than the FBP method, and that bMBMD further improves spatial resolution over iMBMD due to the additional blur modeling. These results demonstrate the advantages of MBMD in resolution performance and noise control over traditional methods for spectral CT. Model-based material decomposition hence has great potential in high-resolution spectral CT applications.