Metal-Tolerant Noncircular Orbit Design and Implementation on Robotic C-Arm Systems.

Grace J Gang, Tom Russ, Yiqun Ma, Christian Toennes, Jeffrey H Siewerdsen, Lothar R Schad, J Webster Stayman
{"title":"Metal-Tolerant Noncircular Orbit Design and Implementation on Robotic C-Arm Systems.","authors":"Grace J Gang,&nbsp;Tom Russ,&nbsp;Yiqun Ma,&nbsp;Christian Toennes,&nbsp;Jeffrey H Siewerdsen,&nbsp;Lothar R Schad,&nbsp;J Webster Stayman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Metal artifacts are a major confounding factor for image quality in CT, especially in image-guided surgery scenarios where surgical tools and implants frequently occur in the field-of-view. Traditional metal artifact correction methods typically use algorithmic solutions to interpolate over the highly attenuated projection measurements where metal is present but cannot recover the missing information obstructed by the metal. In this work, we treat metal artifacts as a missing data problem and employ noncircular orbits to maximize data completeness in the presence of metal. We first implement a local data completeness metric based on Tuy's condition as the percentage of great circles sampled by a particular orbit and accounted for the presence of metal by discounting any rays that pass through metal. We then compute the metric over many locations and many possible metal locations to reflect data completeness for arbitrary metal placements within a volume of interest. We used this metric to evaluate the effectiveness of sinusoidal orbits of different magnitudes and frequencies in metal artifact reduction. We also evaluated noncircular orbits in two imaging systems for phantoms with different metal objects and metal arrangements. Among a circular, tilted circular, and a sinusoidal orbit of two cycles per rotation, the latter is shown to most effectively remove metal artifacts. The noncircular orbit not only reduce the extent of streaks, but allows better visualization of spatial frequencies that cannot be recovered by metal artifact correction algorithms. These results illustrate the potential of relatively simple noncircular orbits to be robust against metal implants which ordinarily present significant challenges in interventional imaging.</p>","PeriodicalId":90477,"journal":{"name":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","volume":"2020 ","pages":"400-403"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643882/pdf/nihms-1640718.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metal artifacts are a major confounding factor for image quality in CT, especially in image-guided surgery scenarios where surgical tools and implants frequently occur in the field-of-view. Traditional metal artifact correction methods typically use algorithmic solutions to interpolate over the highly attenuated projection measurements where metal is present but cannot recover the missing information obstructed by the metal. In this work, we treat metal artifacts as a missing data problem and employ noncircular orbits to maximize data completeness in the presence of metal. We first implement a local data completeness metric based on Tuy's condition as the percentage of great circles sampled by a particular orbit and accounted for the presence of metal by discounting any rays that pass through metal. We then compute the metric over many locations and many possible metal locations to reflect data completeness for arbitrary metal placements within a volume of interest. We used this metric to evaluate the effectiveness of sinusoidal orbits of different magnitudes and frequencies in metal artifact reduction. We also evaluated noncircular orbits in two imaging systems for phantoms with different metal objects and metal arrangements. Among a circular, tilted circular, and a sinusoidal orbit of two cycles per rotation, the latter is shown to most effectively remove metal artifacts. The noncircular orbit not only reduce the extent of streaks, but allows better visualization of spatial frequencies that cannot be recovered by metal artifact correction algorithms. These results illustrate the potential of relatively simple noncircular orbits to be robust against metal implants which ordinarily present significant challenges in interventional imaging.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人c臂系统耐金属非圆轨道设计与实现。
金属伪影是影响CT图像质量的主要干扰因素,特别是在图像引导手术场景中,手术工具和植入物经常出现在视野中。传统的金属伪影校正方法通常使用算法解决方案来插值高度衰减的投影测量,其中金属存在,但不能恢复被金属阻挡的缺失信息。在这项工作中,我们将金属工件视为缺失数据问题,并使用非圆形轨道来最大化金属存在下的数据完整性。我们首先实现一个基于Tuy条件的局部数据完整性度量,作为特定轨道采样的大圆的百分比,并通过贴现穿过金属的任何射线来解释金属的存在。然后,我们在许多位置和许多可能的金属位置上计算度量,以反映感兴趣的体积内任意金属放置的数据完整性。我们使用这个度量来评估不同大小和频率的正弦轨道在金属伪影减小中的有效性。我们还评估了两种成像系统中具有不同金属物体和金属排列的非圆轨道。在圆形、倾斜圆形和每旋转两个周期的正弦轨道中,后者显示出最有效地去除金属伪影。非圆形轨道不仅减少了条纹的范围,而且可以更好地可视化金属伪影校正算法无法恢复的空间频率。这些结果表明,相对简单的非圆形轨道具有抵抗金属植入物的潜力,而金属植入物通常在介入成像中存在重大挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CT Reconstruction using Nonlinear Diffusion Posterior Sampling with Detector Blur Modeling. CT Material Decomposition using Spectral Diffusion Posterior Sampling. Joint Material Decomposition and Scatter Estimation for Spectral CT. Spectral Orbits: Combining Spectral Imaging and Non-Circular Orbits for Interventional CBCT. Lifelike and Deformable Lung Phantoms for 4DCT Imaging: A Three-Dimensional Printing Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1