Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks.

IF 3 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Mammary Gland Biology and Neoplasia Pub Date : 2020-12-01 Epub Date: 2020-11-18 DOI:10.1007/s10911-020-09468-x
Jakub Sumbal, Zuzana Budkova, Gunnhildur Ásta Traustadóttir, Zuzana Koledova
{"title":"Mammary Organoids and 3D Cell Cultures: Old Dogs with New Tricks.","authors":"Jakub Sumbal,&nbsp;Zuzana Budkova,&nbsp;Gunnhildur Ásta Traustadóttir,&nbsp;Zuzana Koledova","doi":"10.1007/s10911-020-09468-x","DOIUrl":null,"url":null,"abstract":"<p><p>3D cell culture methods have been an integral part of and an essential tool for mammary gland and breast cancer research for half a century. In fact, mammary gland researchers, who discovered and deciphered the instructive role of extracellular matrix (ECM) in mammary epithelial cell functional differentiation and morphogenesis, were the pioneers of the 3D cell culture techniques, including organoid cultures. The last decade has brought a tremendous increase in the 3D cell culture techniques, including modifications and innovations of the existing techniques, novel biomaterials and matrices, new technological approaches, and increase in 3D culture complexity, accompanied by several redefinitions of the terms \"3D cell culture\" and \"organoid\". In this review, we provide an overview of the 3D cell culture and organoid techniques used in mammary gland biology and breast cancer research. We discuss their advantages, shortcomings and current challenges, highlight the recent progress in reconstructing the complex mammary gland microenvironment in vitro and ex vivo, and identify the missing 3D cell cultures, urgently needed to aid our understanding of mammary gland development, function, physiology, and disease, including breast cancer.</p>","PeriodicalId":16413,"journal":{"name":"Journal of Mammary Gland Biology and Neoplasia","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10911-020-09468-x","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mammary Gland Biology and Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10911-020-09468-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 18

Abstract

3D cell culture methods have been an integral part of and an essential tool for mammary gland and breast cancer research for half a century. In fact, mammary gland researchers, who discovered and deciphered the instructive role of extracellular matrix (ECM) in mammary epithelial cell functional differentiation and morphogenesis, were the pioneers of the 3D cell culture techniques, including organoid cultures. The last decade has brought a tremendous increase in the 3D cell culture techniques, including modifications and innovations of the existing techniques, novel biomaterials and matrices, new technological approaches, and increase in 3D culture complexity, accompanied by several redefinitions of the terms "3D cell culture" and "organoid". In this review, we provide an overview of the 3D cell culture and organoid techniques used in mammary gland biology and breast cancer research. We discuss their advantages, shortcomings and current challenges, highlight the recent progress in reconstructing the complex mammary gland microenvironment in vitro and ex vivo, and identify the missing 3D cell cultures, urgently needed to aid our understanding of mammary gland development, function, physiology, and disease, including breast cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳腺类器官和3D细胞培养:新把戏的老狗。
半个世纪以来,三维细胞培养方法一直是乳腺和乳腺癌研究的一个组成部分和重要工具。事实上,发现并破译细胞外基质(extracellular matrix, ECM)在乳腺上皮细胞功能分化和形态发生中的指导作用的乳腺研究人员,是包括类器官培养在内的3D细胞培养技术的先驱。在过去的十年中,3D细胞培养技术得到了巨大的发展,包括对现有技术的修改和创新,新型生物材料和基质,新的技术方法,以及3D培养复杂性的增加,伴随着术语“3D细胞培养”和“类器官”的多次重新定义。在这篇综述中,我们提供了在乳腺生物学和乳腺癌研究中使用的三维细胞培养和类器官技术的概述。我们讨论了它们的优点、缺点和当前的挑战,重点介绍了体外和离体重建复杂乳腺微环境的最新进展,并确定了缺失的3D细胞培养物,这有助于我们了解乳腺的发育、功能、生理和疾病,包括乳腺癌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Mammary Gland Biology and Neoplasia
Journal of Mammary Gland Biology and Neoplasia 医学-内分泌学与代谢
CiteScore
5.30
自引率
4.00%
发文量
22
期刊介绍: Journal of Mammary Gland Biology and Neoplasia is the leading Journal in the field of mammary gland biology that provides researchers within and outside the field of mammary gland biology with an integrated source of information pertaining to the development, function, and pathology of the mammary gland and its function. Commencing in 2015, the Journal will begin receiving and publishing a combination of reviews and original, peer-reviewed research. The Journal covers all topics related to the field of mammary gland biology, including mammary development, breast cancer biology, lactation, and milk composition and quality. The environmental, endocrine, nutritional, and molecular factors regulating these processes is covered, including from a comparative biology perspective.
期刊最新文献
Immune Cell Contribution to Mammary Gland Development. Perimenopausal and Menopausal Mammary Glands In A 4-Vinylcyclohexene Diepoxide Mouse Model. State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We? Transcriptomic Analysis of Pubertal and Adult Virgin Mouse Mammary Epithelial and Stromal Cell Populations. Rat Models of Hormone Receptor-Positive Breast Cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1