{"title":"Ontology-Mediated Querying with Horn Description Logics.","authors":"Leif Sabellek","doi":"10.1007/s13218-020-00674-7","DOIUrl":null,"url":null,"abstract":"<p><p>An ontology-mediated query (OMQ) consists of a database query paired with an ontology. When evaluated on a database, an OMQ returns not only the answers that are already in the database, but also those answers that can be obtained via logical reasoning using rules from ontology. There are many open questions regarding the complexities of problems related to OMQs. Motivated by the use of ontologies in practice, new reasoning problems which have never been considered in the context of ontologies become relevant, since they can improve the usability of ontology enriched systems. This thesis deals with various reasoning problems that emerge from ontology-mediated querying and it investigates the computational complexity of these problems. We focus on ontologies formulated in Horn description logics, which are a popular choice for ontologies in practice. In particular, the thesis gives results regarding the data complexity of OMQ evaluation by completely classifying complexity and rewritability questions for OMQs based on an EL ontology and a conjunctive query. Furthermore, the query-by-example problem, and the expressibility and verification problem in ontology-based data access are introduced and investigated.</p>","PeriodicalId":45413,"journal":{"name":"Kunstliche Intelligenz","volume":"34 4","pages":"533-537"},"PeriodicalIF":2.8000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13218-020-00674-7","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kunstliche Intelligenz","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13218-020-00674-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
An ontology-mediated query (OMQ) consists of a database query paired with an ontology. When evaluated on a database, an OMQ returns not only the answers that are already in the database, but also those answers that can be obtained via logical reasoning using rules from ontology. There are many open questions regarding the complexities of problems related to OMQs. Motivated by the use of ontologies in practice, new reasoning problems which have never been considered in the context of ontologies become relevant, since they can improve the usability of ontology enriched systems. This thesis deals with various reasoning problems that emerge from ontology-mediated querying and it investigates the computational complexity of these problems. We focus on ontologies formulated in Horn description logics, which are a popular choice for ontologies in practice. In particular, the thesis gives results regarding the data complexity of OMQ evaluation by completely classifying complexity and rewritability questions for OMQs based on an EL ontology and a conjunctive query. Furthermore, the query-by-example problem, and the expressibility and verification problem in ontology-based data access are introduced and investigated.
期刊介绍:
Artificial Intelligence has successfully established itself as a scientific discipline in research and education and has become an integral part of Computer Science with an interdisciplinary character. AI deals with both the development of information processing systems that deliver “intelligent” services and with the modeling of human cognitive skills with the help of information processing systems. Research, development and applications in the field of AI pursue the general goal of creating processes for taking in and processing information that more closely resemble human problem-solving behavior, and to subsequently use those processes to derive methods that enhance and qualitatively improve conventional information processing systems. KI – Künstliche Intelligenz is the official journal of the division for artificial intelligence within the ''Gesellschaft für Informatik e.V.'' (GI) – the German Informatics Society – with contributions from the entire field of artificial intelligence. The journal presents fundamentals and tools, their use and adaptation for scientific purposes, and applications that are implemented using AI methods – and thus provides readers with the latest developments in and well-founded background information on all relevant aspects of artificial intelligence. A highly reputed team of editors from both university and industry will ensure the scientific quality of the articles.The journal provides all members of the AI community with quick access to current topics in the field, while also promoting vital interdisciplinary interchange, it will as well serve as a media of communication between the members of the division and the parent society. The journal is published in English. Content published in this journal is peer reviewed (Double Blind).