Immunomagnetic separation is a suitable method for electrophysiology and ion channel pharmacology studies on T cells.

Gabor Tajti, Tibor Gabor Szanto, Agota Csoti, Greta Racz, César Evaristo, Peter Hajdu, Gyorgy Panyi
{"title":"Immunomagnetic separation is a suitable method for electrophysiology and ion channel pharmacology studies on T cells.","authors":"Gabor Tajti, Tibor Gabor Szanto, Agota Csoti, Greta Racz, César Evaristo, Peter Hajdu, Gyorgy Panyi","doi":"10.1080/19336950.2020.1859753","DOIUrl":null,"url":null,"abstract":"<p><p>Ion channels play pivotal role in the physiological and pathological function of immune cells. As immune cells represent a functionally diverse population, subtype-specific functional studies, such as single-cell electrophysiology require proper subset identification and separation. Magnetic-activated cell sorting (MACS) techniques provide an alternative to fluorescence-activated cell sorting (FACS), however, the potential impact of MACS-related beads on the biophysical and pharmacological properties of the ion channels were not studied yet. We studied the aforementioned properties of the voltage-gated Kv1.3 K<sup>+</sup> channel in activated CD4<sup>+</sup> T-cells as well as the membrane capacitance using whole-cell patch-clamp following immunomagnetic positive separation, using the REAlease® kit. This kit allows three experimental configurations: bead-bound configuration, bead-free configuration following the removal of magnetic beads, and the label-free configuration following removal of CD4 recognizing antibody fragments. As controls, we used FACS separation as well as immunomagnetic negative selection. The membrane capacitance and of the biophysical parameters of Kv1.3 gating, voltage-dependence of steady-state activation and inactivation kinetics of the current were not affected by the presence of MACS-related compounds on the cell surface. We found subtle differences in the activation kinetics of the Kv1.3 current that could not be explained by the presence of MACS-related compounds. Neither the equilibrium block of Kv1.3 by TEA<sup>+</sup> or charybdotoxin (ChTx) nor the kinetics of ChTx block are affected by the presence of the magnetics beads on the cell surface. Based on our results MACS is a suitable method to separate cells for studying ion channels in non-excitable cells, such as T-lymphocytes.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":" ","pages":"53-66"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/02/ff/KCHL_15_1859753.PMC7781520.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19336950.2020.1859753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ion channels play pivotal role in the physiological and pathological function of immune cells. As immune cells represent a functionally diverse population, subtype-specific functional studies, such as single-cell electrophysiology require proper subset identification and separation. Magnetic-activated cell sorting (MACS) techniques provide an alternative to fluorescence-activated cell sorting (FACS), however, the potential impact of MACS-related beads on the biophysical and pharmacological properties of the ion channels were not studied yet. We studied the aforementioned properties of the voltage-gated Kv1.3 K+ channel in activated CD4+ T-cells as well as the membrane capacitance using whole-cell patch-clamp following immunomagnetic positive separation, using the REAlease® kit. This kit allows three experimental configurations: bead-bound configuration, bead-free configuration following the removal of magnetic beads, and the label-free configuration following removal of CD4 recognizing antibody fragments. As controls, we used FACS separation as well as immunomagnetic negative selection. The membrane capacitance and of the biophysical parameters of Kv1.3 gating, voltage-dependence of steady-state activation and inactivation kinetics of the current were not affected by the presence of MACS-related compounds on the cell surface. We found subtle differences in the activation kinetics of the Kv1.3 current that could not be explained by the presence of MACS-related compounds. Neither the equilibrium block of Kv1.3 by TEA+ or charybdotoxin (ChTx) nor the kinetics of ChTx block are affected by the presence of the magnetics beads on the cell surface. Based on our results MACS is a suitable method to separate cells for studying ion channels in non-excitable cells, such as T-lymphocytes.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
免疫磁性分离是对 T 细胞进行电生理学和离子通道药理学研究的一种合适方法。
离子通道在免疫细胞的生理和病理功能中发挥着关键作用。由于免疫细胞代表着功能多样化的群体,单细胞电生理学等亚型特异性功能研究需要适当的亚群识别和分离。磁激活细胞分选(MACS)技术为荧光激活细胞分选(FACS)提供了一种替代方法,然而,MACS 相关的磁珠对离子通道的生物物理和药理特性的潜在影响尚未得到研究。我们使用 REAlease® 试剂盒研究了活化的 CD4+ T 细胞中电压门控 Kv1.3 K+ 通道的上述特性,以及免疫磁性阳性分离后使用全细胞贴片钳的膜电容。该试剂盒有三种实验配置:磁珠结合配置、去除磁珠后的无磁珠配置和去除 CD4 识别抗体片段后的无标记配置。作为对照,我们使用了 FACS 分离和免疫磁性阴性选择。膜电容和 Kv1.3 门控的生物物理参数、稳态激活的电压依赖性以及电流的失活动力学均不受细胞表面 MACS 相关化合物的影响。我们发现,Kv1.3 电流的激活动力学存在微妙的差异,而这些差异无法用 MACS 相关化合物的存在来解释。TEA+或charybdotoxin(ChTx)对Kv1.3的平衡阻断以及ChTx阻断的动力学均不受细胞表面磁珠存在的影响。根据我们的研究结果,MACS 是一种分离细胞的合适方法,可用于研究非兴奋细胞(如 T 淋巴细胞)中的离子通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A structural atlas of druggable sites on Nav channels. Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes. Novel insights into voltage-gated ion channels: Translational breakthroughs in medical oncology. Reducing agents facilitate membrane patch seal integrity and longevity. A phenylalanine at the extracellular side of Kir1.1 facilitates potassium permeation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1