Kv1.3 inhibition attenuates neuroinflammation through disruption of microglial calcium signaling.

Alla F Fomina, Hai M Nguyen, Heike Wulff
{"title":"Kv1.3 inhibition attenuates neuroinflammation through disruption of microglial calcium signaling.","authors":"Alla F Fomina, Hai M Nguyen, Heike Wulff","doi":"10.1080/19336950.2020.1853943","DOIUrl":null,"url":null,"abstract":"<p><p>In the last 5 years inhibitors of the potassium channel K<sub>V</sub>1.3 have been shown to reduce neuroinflammation in rodent models of ischemic stroke, Alzheimer's disease, Parkinson's disease and traumatic brain injury. At the systemic level these beneficial actions are mediated by a reduction in microglia activation and a suppression of pro-inflammatory cytokine and nitric oxide production. However, the molecular mechanisms for the suppressive action of K<sub>V</sub>1.3 blockers on pro-inflammatory microglia functions was not known until our group recently demonstrated that K<sub>V</sub>1.3 channels not only regulate membrane potential, as would be expected of a voltage-gated potassium channel, but also play a crucial role in enabling microglia to resist depolarizations produced by the danger signal ATP thus regulating calcium influx through P2X4 receptors. We here review the role of K<sub>V</sub>1.3 in microglial signaling and show that, similarly to their role in T cells, K<sub>V</sub>1.3 channels also regulated store-operated calcium influx in microglia.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":" ","pages":"67-78"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7781540/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19336950.2020.1853943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the last 5 years inhibitors of the potassium channel KV1.3 have been shown to reduce neuroinflammation in rodent models of ischemic stroke, Alzheimer's disease, Parkinson's disease and traumatic brain injury. At the systemic level these beneficial actions are mediated by a reduction in microglia activation and a suppression of pro-inflammatory cytokine and nitric oxide production. However, the molecular mechanisms for the suppressive action of KV1.3 blockers on pro-inflammatory microglia functions was not known until our group recently demonstrated that KV1.3 channels not only regulate membrane potential, as would be expected of a voltage-gated potassium channel, but also play a crucial role in enabling microglia to resist depolarizations produced by the danger signal ATP thus regulating calcium influx through P2X4 receptors. We here review the role of KV1.3 in microglial signaling and show that, similarly to their role in T cells, KV1.3 channels also regulated store-operated calcium influx in microglia.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抑制 Kv1.3 可通过破坏小胶质细胞的钙信号转导减轻神经炎症。
在过去 5 年中,钾通道 KV1.3 抑制剂在缺血性中风、阿尔茨海默病、帕金森病和创伤性脑损伤的啮齿类动物模型中被证明可减少神经炎症。在系统水平上,这些有益的作用是通过减少小胶质细胞的激活和抑制促炎细胞因子和一氧化氮的产生来实现的。然而,KV1.3 阻滞剂对促炎性小胶质细胞功能的抑制作用的分子机制一直不为人知,直到我们的研究小组最近证实,KV1.3 通道不仅能调节膜电位(电压门控钾通道的预期功能),还能在使小胶质细胞抵抗危险信号 ATP 产生的去极化方面发挥关键作用,从而通过 P2X4 受体调节钙离子流入。我们在此回顾了 KV1.3 在小胶质细胞信号传导中的作用,并表明与它们在 T 细胞中的作用类似,KV1.3 通道也能调节小胶质细胞中储存操作的钙离子流入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A structural atlas of druggable sites on Nav channels. Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes. Novel insights into voltage-gated ion channels: Translational breakthroughs in medical oncology. Reducing agents facilitate membrane patch seal integrity and longevity. A phenylalanine at the extracellular side of Kir1.1 facilitates potassium permeation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1