Multiple caffeine doses maintain vigilance, attention, complex motor sequence expression, and manual dexterity during 77 hours of total sleep deprivation
{"title":"Multiple caffeine doses maintain vigilance, attention, complex motor sequence expression, and manual dexterity during 77 hours of total sleep deprivation","authors":"William D.S. Killgore , Gary H. Kamimori","doi":"10.1016/j.nbscr.2020.100051","DOIUrl":null,"url":null,"abstract":"<div><p>Sleep deprivation (SD) and fatigue have detrimental effects on performance in operational settings. Few studies have investigated the cumulative effects of SD and fatigue on performance under heavy workload demands. Therefore, we investigated the efficacy of multiple repeated doses of caffeine as a countermeasure to SD and fatigue during 77 h total SD (TSD) during the early morning hours. Twenty-three males and females, 18 – 35 years of age, who identified as moderate caffeine consumers completed the Psychomotor Vigilance Task (PVT) 141 times during the experimental test period. Caffeine was administered in a multi-dose paradigm over three nights without sleep. Participants received either caffeine (200 mg) or placebo at the beginning of each 2-h test block from 0100 – 0900 (800 mg total per night). While PVT speed declined for both groups across all 3 nights, the caffeine group consistently out-performed the placebo group. Caffeine maintained attentiveness (1-5 s lapses) on night 1, but this advantage was lost on nights 2 and 3. Caffeine outperformed placebo for responsive lapses (5-9 s lapses) across all three nights, but caffeine performance was still notably worse than at baseline. Prolonged non-responsive lapses (beyond 10 s) were only reduced by caffeine on night 2. Caffeine was more effective than placebo across all nights at sustaining completion speed of a complex motor sequence task and a manual coordination task. Essentially, caffeine is an effective countermeasure for SD, as it mitigates declines in speed and failures to respond, and sustains motor planning and coordination. However, caffeine does not restore normal functioning during SD and cannot be considered as a replacement for sleep.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"9 ","pages":"Article 100051"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2020.100051","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994420300031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 23
Abstract
Sleep deprivation (SD) and fatigue have detrimental effects on performance in operational settings. Few studies have investigated the cumulative effects of SD and fatigue on performance under heavy workload demands. Therefore, we investigated the efficacy of multiple repeated doses of caffeine as a countermeasure to SD and fatigue during 77 h total SD (TSD) during the early morning hours. Twenty-three males and females, 18 – 35 years of age, who identified as moderate caffeine consumers completed the Psychomotor Vigilance Task (PVT) 141 times during the experimental test period. Caffeine was administered in a multi-dose paradigm over three nights without sleep. Participants received either caffeine (200 mg) or placebo at the beginning of each 2-h test block from 0100 – 0900 (800 mg total per night). While PVT speed declined for both groups across all 3 nights, the caffeine group consistently out-performed the placebo group. Caffeine maintained attentiveness (1-5 s lapses) on night 1, but this advantage was lost on nights 2 and 3. Caffeine outperformed placebo for responsive lapses (5-9 s lapses) across all three nights, but caffeine performance was still notably worse than at baseline. Prolonged non-responsive lapses (beyond 10 s) were only reduced by caffeine on night 2. Caffeine was more effective than placebo across all nights at sustaining completion speed of a complex motor sequence task and a manual coordination task. Essentially, caffeine is an effective countermeasure for SD, as it mitigates declines in speed and failures to respond, and sustains motor planning and coordination. However, caffeine does not restore normal functioning during SD and cannot be considered as a replacement for sleep.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.