{"title":"Insight on Multidrug Resistance and Nanomedicine Approaches to Overcome MDR.","authors":"Imran Shair Mohammad, Wei He, Lifang Yin","doi":"10.1615/CritRevTherDrugCarrierSyst.2020025052","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug resistance (MDR) remains a major obstacle to ensure effective chemotherapy in cancer patients. Several factors could be associated with cancer cells' drug resistance such as overexpression of P-glycoprotein (P-gp), cancer stem cells (CSCs), defect in apoptosis, mutation and alteration in DNA repair pathways, angiogenesis, autophagy, and modulation in metabolic enzymes. Until now, drug efflux by ABC transporters has been a univocal and well-established mechanism of chemotherapeutic associated drug resistance. To explore the mechanics involved in ABC transporter associated drug resistance, many crucial studies have been conducted from identification of drug binding sites to elucidation of their structure. Due to our continuous battle with drug resistance, several strategies have been employed to combat MDR, including P-gp modulators, siRNAs, antibodies, as well as peptides. Furthermore, various nanoparticle and different effective combination nanomedicine strategies also suggest some exciting results. Thus, to improve nanomedicine approaches to overcome MDR, in this evolutionary review, we have focused on fundamentals of possible strategies as well as the latest accomplishments to reverse MDR.</p>","PeriodicalId":50614,"journal":{"name":"Critical Reviews in Therapeutic Drug Carrier Systems","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Therapeutic Drug Carrier Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2020025052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 12
Abstract
Multidrug resistance (MDR) remains a major obstacle to ensure effective chemotherapy in cancer patients. Several factors could be associated with cancer cells' drug resistance such as overexpression of P-glycoprotein (P-gp), cancer stem cells (CSCs), defect in apoptosis, mutation and alteration in DNA repair pathways, angiogenesis, autophagy, and modulation in metabolic enzymes. Until now, drug efflux by ABC transporters has been a univocal and well-established mechanism of chemotherapeutic associated drug resistance. To explore the mechanics involved in ABC transporter associated drug resistance, many crucial studies have been conducted from identification of drug binding sites to elucidation of their structure. Due to our continuous battle with drug resistance, several strategies have been employed to combat MDR, including P-gp modulators, siRNAs, antibodies, as well as peptides. Furthermore, various nanoparticle and different effective combination nanomedicine strategies also suggest some exciting results. Thus, to improve nanomedicine approaches to overcome MDR, in this evolutionary review, we have focused on fundamentals of possible strategies as well as the latest accomplishments to reverse MDR.
期刊介绍:
Therapeutic uses of a variety of drug carrier systems have significant impact on the treatment and potential cure of many chronic diseases, including cancer, diabetes mellitus, psoriasis, parkinsons, Alzheimer, rheumatoid arthritis, HIV infection, infectious diseases, asthma, and drug addiction. Scientific efforts in these areas are multidisciplinary, involving the physical, biological, medical, pharmaceutical, biological materials, and engineering fields.
Articles concerning this field appear in a wide variety of journals. With the vast increase in the number of articles and the tendency to fragment science, it becomes increasingly difficult to keep abreast of the literature and to sort out and evaluate the importance and reliability of the data, especially when proprietary considerations are involved. Abstracts and noncritical articles often do not provide a sufficiently reliable basis for proper assessment of a given field without the additional perusal of the original literature. This journal bridges this gap by publishing authoritative, objective, comprehensive multidisciplinary critical review papers with emphasis on formulation and delivery systems. Both invited and contributed articles are subject to peer review.