Carolyn F McCabe, Vasantha Padmanabhan, Dana C Dolinoy, Steven E Domino, Tamara R Jones, Kelly M Bakulski, Jaclyn M Goodrich
{"title":"Maternal environmental exposure to bisphenols and epigenome-wide DNA methylation in infant cord blood.","authors":"Carolyn F McCabe, Vasantha Padmanabhan, Dana C Dolinoy, Steven E Domino, Tamara R Jones, Kelly M Bakulski, Jaclyn M Goodrich","doi":"10.1093/eep/dvaa021","DOIUrl":null,"url":null,"abstract":"<p><p>Maternal prenatal exposures, including bisphenol A (BPA), are associated with offspring's risk of disease later in life. Alterations in DNA methylation may be a mechanism through which altered prenatal conditions (e.g. maternal exposure to environmental toxicants) elicit this disease risk. In the Michigan Mother and Infant Pairs Cohort, maternal first-trimester urinary BPA, bisphenol F, and bisphenol S concentrations were tested for association with DNA methylation patterns in infant umbilical cord blood leukocytes (<i>N</i> = 69). We used the Illumina Infinium MethylationEPIC BeadChip to quantitatively evaluate DNA methylation across the epigenome; 822 020 probes passed pre-processing and quality checks. Single-site DNA methylation and bisphenol models were adjusted for infant sex, estimated cell-type proportions (determined using cell-type estimation algorithm), and batch as covariates. Thirty-eight CpG sites [false discovery rate (FDR) <0.05] were significantly associated with maternal BPA exposure. Increasing BPA concentrations were associated with lower DNA methylation at 87% of significant sites. BPA exposure associated DNA methylation sites were enriched for 38 pathways significant at FDR <0.05. The pathway or gene-set with the greatest odds of enrichment for differential methylation (FDR <0.05) was type I interferon receptor binding. This study provides a novel understanding of fetal response to maternal bisphenol exposure through epigenetic change.</p>","PeriodicalId":11774,"journal":{"name":"Environmental Epigenetics","volume":"6 1","pages":"dvaa021"},"PeriodicalIF":4.8000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/eep/dvaa021","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Epigenetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/eep/dvaa021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 16
Abstract
Maternal prenatal exposures, including bisphenol A (BPA), are associated with offspring's risk of disease later in life. Alterations in DNA methylation may be a mechanism through which altered prenatal conditions (e.g. maternal exposure to environmental toxicants) elicit this disease risk. In the Michigan Mother and Infant Pairs Cohort, maternal first-trimester urinary BPA, bisphenol F, and bisphenol S concentrations were tested for association with DNA methylation patterns in infant umbilical cord blood leukocytes (N = 69). We used the Illumina Infinium MethylationEPIC BeadChip to quantitatively evaluate DNA methylation across the epigenome; 822 020 probes passed pre-processing and quality checks. Single-site DNA methylation and bisphenol models were adjusted for infant sex, estimated cell-type proportions (determined using cell-type estimation algorithm), and batch as covariates. Thirty-eight CpG sites [false discovery rate (FDR) <0.05] were significantly associated with maternal BPA exposure. Increasing BPA concentrations were associated with lower DNA methylation at 87% of significant sites. BPA exposure associated DNA methylation sites were enriched for 38 pathways significant at FDR <0.05. The pathway or gene-set with the greatest odds of enrichment for differential methylation (FDR <0.05) was type I interferon receptor binding. This study provides a novel understanding of fetal response to maternal bisphenol exposure through epigenetic change.