Multi-bit Boolean model for chemotactic drift of Escherichia coli

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2020-10-16 DOI:10.1049/iet-syb.2020.0060
Anuj Deshpande, Sibendu Samanta, Sutharsan Govindarajan, Ritwik Kumar Layek
{"title":"Multi-bit Boolean model for chemotactic drift of Escherichia coli","authors":"Anuj Deshpande,&nbsp;Sibendu Samanta,&nbsp;Sutharsan Govindarajan,&nbsp;Ritwik Kumar Layek","doi":"10.1049/iet-syb.2020.0060","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Dynamic biological systems can be modelled to an equivalent modular structure using Boolean networks (BNs) due to their simple construction and relative ease of integration. The chemotaxis network of the bacterium <i>Escherichia coli</i> (<i>E. coli</i> ) is one of the most investigated biological systems. In this study, the authors developed a multi-bit Boolean approach to model the drifting behaviour of the <i>E. coli</i> chemotaxis system. Their approach, which is slightly different than the conventional BNs, is designed to provide finer resolution to mimic high-level functional behaviour. Using this approach, they simulated the transient and steady-state responses of the chemoreceptor sensory module. Furthermore, they estimated the drift velocity under conditions of the exponential nutrient gradient. Their predictions on chemotactic drifting are in good agreement with the experimental measurements under similar input conditions. Taken together, by simulating chemotactic drifting, they propose that multi-bit Boolean methodology can be used for modelling complex biological networks. Application of the method towards designing bio-inspired systems such as nano-bots is discussed.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687284/pdf/SYB2-14-343.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0060","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic biological systems can be modelled to an equivalent modular structure using Boolean networks (BNs) due to their simple construction and relative ease of integration. The chemotaxis network of the bacterium Escherichia coli (E. coli ) is one of the most investigated biological systems. In this study, the authors developed a multi-bit Boolean approach to model the drifting behaviour of the E. coli chemotaxis system. Their approach, which is slightly different than the conventional BNs, is designed to provide finer resolution to mimic high-level functional behaviour. Using this approach, they simulated the transient and steady-state responses of the chemoreceptor sensory module. Furthermore, they estimated the drift velocity under conditions of the exponential nutrient gradient. Their predictions on chemotactic drifting are in good agreement with the experimental measurements under similar input conditions. Taken together, by simulating chemotactic drifting, they propose that multi-bit Boolean methodology can be used for modelling complex biological networks. Application of the method towards designing bio-inspired systems such as nano-bots is discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大肠杆菌趋化漂移的多比特布尔模型
由于布尔网络结构简单,易于集成,动态生物系统可以用布尔网络(BNs)建模为等效的模块化结构。大肠杆菌(E. coli)的趋化网络是研究最多的生物系统之一。在这项研究中,作者开发了一种多比特布尔方法来模拟大肠杆菌趋化系统的漂移行为。他们的方法与传统的神经网络略有不同,旨在提供更精细的分辨率来模拟高级功能行为。利用这种方法,他们模拟了化学感受器感觉模块的瞬态和稳态反应。此外,他们估计了指数营养梯度条件下的漂移速度。在相似的输入条件下,他们对趋化漂移的预测与实验结果很好地吻合。总之,通过模拟趋化漂移,他们提出多比特布尔方法可用于模拟复杂的生物网络。讨论了该方法在设计纳米机器人等仿生系统中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1