Modification of media using food-grade components for the fermentation of Bifidobacterium and Lactobacillus strains in large-scale bioreactors.

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS Preparative Biochemistry & Biotechnology Pub Date : 2024-09-01 Epub Date: 2021-01-06 DOI:10.1080/10826068.2020.1861009
Chayanee Boontun, Savitri Vatanyoopaisarn, Sungwarn Hankla, Eisuke Kuraya, Yasutomo Tamaki
{"title":"Modification of media using food-grade components for the fermentation of <i>Bifidobacterium</i> and <i>Lactobacillus</i> strains in large-scale bioreactors.","authors":"Chayanee Boontun, Savitri Vatanyoopaisarn, Sungwarn Hankla, Eisuke Kuraya, Yasutomo Tamaki","doi":"10.1080/10826068.2020.1861009","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotic bacteria continue to receive increasing attention in the food and feed industries. However, the production of <i>Bifidobacterium</i> and <i>Lactobacillus</i> at an industrial scale is challenging because of specific nutrient requirements and conditions, which are complicated and costly. We developed low-cost culture media by modifying the carbon and nitrogen sources for <i>Bifidobacterium animalis</i> subsp. <i>lactis</i> KMP-H9-01 and <i>Lactobacillus reuteri</i> KMP-P4-S03 from available food grade components. Sucrose (15 g/l) was selected as a suitable carbon source for both strains because it was the most economic and facilitated bacterial growth that was equal to that of glucose. The <i>Bifidobacterium</i> strain required beef extract as a nitrogen source to multiply. The fermentation of both strains using the modified media formula in 5-L and 50-L bioreactors showed that the highest cell counts of <i>L. reuteri</i> and <i>B. animalis</i> subsp. <i>lactis</i> were 9 and 9.8 log CFU/ml after 12-15 h, respectively. The concentration (g/l) ratio between lactate and acetate obtained from <i>B. animalis</i> subsp. <i>lactis</i> was 7:7.4 at 12 h and 11.4:10.6 at 40 h; the ratio was similar at both time points (6.9: 1.1) for <i>L. reuteri</i>. Thus, this economically modified food-grade medium for the large-scale fermentation of two probiotic bacteria was efficient.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1017-1027"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2020.1861009","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Probiotic bacteria continue to receive increasing attention in the food and feed industries. However, the production of Bifidobacterium and Lactobacillus at an industrial scale is challenging because of specific nutrient requirements and conditions, which are complicated and costly. We developed low-cost culture media by modifying the carbon and nitrogen sources for Bifidobacterium animalis subsp. lactis KMP-H9-01 and Lactobacillus reuteri KMP-P4-S03 from available food grade components. Sucrose (15 g/l) was selected as a suitable carbon source for both strains because it was the most economic and facilitated bacterial growth that was equal to that of glucose. The Bifidobacterium strain required beef extract as a nitrogen source to multiply. The fermentation of both strains using the modified media formula in 5-L and 50-L bioreactors showed that the highest cell counts of L. reuteri and B. animalis subsp. lactis were 9 and 9.8 log CFU/ml after 12-15 h, respectively. The concentration (g/l) ratio between lactate and acetate obtained from B. animalis subsp. lactis was 7:7.4 at 12 h and 11.4:10.6 at 40 h; the ratio was similar at both time points (6.9: 1.1) for L. reuteri. Thus, this economically modified food-grade medium for the large-scale fermentation of two probiotic bacteria was efficient.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用食品级成分对培养基进行改良,以便在大型生物反应器中发酵双歧杆菌和乳酸杆菌菌株。
益生菌在食品和饲料行业继续受到越来越多的关注。然而,双歧杆菌和乳酸杆菌的工业化生产具有挑战性,因为需要特定的营养物质和条件,既复杂又昂贵。我们利用现有的食品级成分改良了动物双歧杆菌亚种 KMP-H9-01 和路特氏乳杆菌 KMP-P4-S03 的碳源和氮源,从而开发出了低成本的培养基。蔗糖(15 克/升)被选为这两种菌株的合适碳源,因为蔗糖是最经济的碳源,而且与葡萄糖一样有利于细菌生长。双歧杆菌菌株需要牛肉提取物作为氮源才能繁殖。在 5 升和 50 升生物反应器中使用改良培养基配方对两种菌株进行发酵,结果表明,12-15 小时后,L. reuteri 和 B. animalis subsp.从 B. animalis subsp. 乳酸菌中获得的乳酸和醋酸的浓度(克/升)比在 12 小时内为 7:7.4,40 小时内为 11.4:10.6;在这两个时间点,L. reuteri 的浓度比相似(6.9:1.1)。因此,这种用于两种益生菌大规模发酵的经济型改良食品级培养基是高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
期刊最新文献
Convenient production of a novel recombinant antibody against periodontitis biomarker S100A8. Hybrid magnetic nanocomposites of arginine deiminase with improved stability and recyclability for biomedical applications. Cellulase immobilization on nano-chitosan/chromium metal-organic framework hybrid matrix for efficient conversion of lignocellulosic biomass to glucose. The effect of different light spectra on selenium bioaccumulation by Spirulina platensis cyanobacteria in flat plate photobioreactors. Optimization of microwave-assisted extraction using response surface methodology and HPLC-DAD phenolic compounds quantification from Hylocereus undatus peel and pulp cultivated in Tunisia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1