Electrochemical Impedance Spectroscopy of Zinc Oxide Nanoparticles After Deposition on Screen Printed Electrode.

Kailai Wang, Wenyu Zhang, Edward P C Lai
{"title":"Electrochemical Impedance Spectroscopy of Zinc Oxide Nanoparticles After Deposition on Screen Printed Electrode.","authors":"Kailai Wang,&nbsp;Wenyu Zhang,&nbsp;Edward P C Lai","doi":"10.1166/jnn.2021.19366","DOIUrl":null,"url":null,"abstract":"<p><p>A small aliquot (10-14 μL) of ZnO nanoparticles dispersed in deionized water was deposited by evaporation to produce a dry residue on the working area of a screen-printed electrode. An electrochemical test solution containing K₃Fe(CN)<sub>6</sub> and KCl was added to the electrode surface for analysis by electrochemical impendence spectroscopy (EIS). Using this deposition analysis technique, a new relationship between the charge transfer resistance (<i>R</i><sub>ct</sub>) and the amount of ZnO nanoparticles has been explored. Based on the trend of increasing <i>R</i><sub>ct</sub> value with an increase of ZnO nanoparticles, a quantitative analysis method can be established to determine the mass of nanoparticles (0.01-1.00 μg) deposited from an unknown dispersion. To study the matrix effect, addition of Nafion solution to the aqueous dispersion resulted in a change of the linear range to 0.3-0.5 μg nanoparticles. Addition of methanol (10% by volume) to the aqueous dispersion changes the analysis range to 0.2-0.6 μg nanoparticles, while additional methanol (50% by volume) changes the analysis range to 0.06-1.00 μg nanoparticles. The analytical sensitivity, as indicated by the slope of each standard calibration curve, ranked as: aqueous dispersion > Nafion/aqueous dispersion > 10% methanol/aqueous dispersion > 50% methanol/aqueous dispersion. Altogether these results verify that deionized water is the best dispersion medium for EIS analysis of ZnO nanoparticles.</p>","PeriodicalId":16417,"journal":{"name":"Journal of nanoscience and nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nanoscience and nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jnn.2021.19366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A small aliquot (10-14 μL) of ZnO nanoparticles dispersed in deionized water was deposited by evaporation to produce a dry residue on the working area of a screen-printed electrode. An electrochemical test solution containing K₃Fe(CN)6 and KCl was added to the electrode surface for analysis by electrochemical impendence spectroscopy (EIS). Using this deposition analysis technique, a new relationship between the charge transfer resistance (Rct) and the amount of ZnO nanoparticles has been explored. Based on the trend of increasing Rct value with an increase of ZnO nanoparticles, a quantitative analysis method can be established to determine the mass of nanoparticles (0.01-1.00 μg) deposited from an unknown dispersion. To study the matrix effect, addition of Nafion solution to the aqueous dispersion resulted in a change of the linear range to 0.3-0.5 μg nanoparticles. Addition of methanol (10% by volume) to the aqueous dispersion changes the analysis range to 0.2-0.6 μg nanoparticles, while additional methanol (50% by volume) changes the analysis range to 0.06-1.00 μg nanoparticles. The analytical sensitivity, as indicated by the slope of each standard calibration curve, ranked as: aqueous dispersion > Nafion/aqueous dispersion > 10% methanol/aqueous dispersion > 50% methanol/aqueous dispersion. Altogether these results verify that deionized water is the best dispersion medium for EIS analysis of ZnO nanoparticles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化锌纳米颗粒在丝网印刷电极上沉积后的电化学阻抗谱。
将分散在去离子水中的少量(10 ~ 14 μL) ZnO纳米颗粒通过蒸发沉积在丝网印刷电极的工作区域上,形成干燥残留物。在电极表面加入含有K₃Fe(CN)6和KCl的电化学测试溶液,采用电化学阻抗谱法(EIS)进行分析。利用这种沉积分析技术,探索了ZnO纳米颗粒用量与电荷转移电阻之间的新关系。基于Rct值随ZnO纳米粒子的增加而增加的趋势,建立了一种定量分析方法来确定从未知分散体中沉积的纳米粒子(0.01 ~ 1.00 μg)的质量。为了研究基质效应,在水分散体中加入Nafion溶液,使得纳米颗粒在0.3 ~ 0.5 μg范围内呈线性变化。在水相分散体中添加甲醇(体积比10%)使分析范围变为0.2 ~ 0.6 μg纳米粒子,而添加甲醇(体积比50%)使分析范围变为0.06 ~ 1.00 μg纳米粒子。各标准校准曲线斜率表示的分析灵敏度依次为:水分散体> Nafion/水分散体> 10%甲醇/水分散体> 50%甲醇/水分散体。综上所述,这些结果验证了去离子水是氧化锌纳米粒子EIS分析的最佳分散介质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of nanoscience and nanotechnology
Journal of nanoscience and nanotechnology 工程技术-材料科学:综合
自引率
0.00%
发文量
0
审稿时长
3.6 months
期刊介绍: JNN is a multidisciplinary peer-reviewed journal covering fundamental and applied research in all disciplines of science, engineering and medicine. JNN publishes all aspects of nanoscale science and technology dealing with materials synthesis, processing, nanofabrication, nanoprobes, spectroscopy, properties, biological systems, nanostructures, theory and computation, nanoelectronics, nano-optics, nano-mechanics, nanodevices, nanobiotechnology, nanomedicine, nanotoxicology.
期刊最新文献
Preparing and Applying Silver Nanoparticles in Conductive Ink and Inkjet Painting. Observation of Dominant Nuclei and Magic-Sized CdS Nanoparticles in a Single-Phase System. A Simple Dilution Method for Preparation of Different Aggregates from Oleic Acid/CHAPSO Bicelles. Small Hematite Nanoparticles from the Kiruna-Type Ore; Evaluation of Declined Balance Limit of the Attrition Process and Their Catalytic Properties. The Release of Indium Ion Derived from Epithelial Cells and Macrophages Solubilization Contribute to Pneumotoxicity Induced by Indium Oxide Nanoparticles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1