{"title":"Wnt/-Catenin Signaling and Liver Regeneration: Circuit, Biology, and Opportunities.","authors":"Shikai Hu, Satdarshan P Monga","doi":"10.3727/105221621X16111780348794","DOIUrl":null,"url":null,"abstract":"<p><p>The liver is uniquely bestowed with an ability to regenerate following a surgical or toxicant insult. One of the most researched models to demonstrate the regenerative potential of this organ is the partial hepatectomy model, where two thirds of the liver is surgically resected. The remnant liver replenishes the lost mass within 1014 days in mice. The distinctive ability of the liver to regenerate has allowed living donor and split liver transplantation. One signaling pathway shown to be activated during the process of regeneration to contribute toward the mass and functional recovery of the liver is the Wnt/-catenin pathway. Very early after any insult to the liver, the cellmolecule circuitry of the Wnt/-catenin pathway is set into motion with the release of specific Wnt ligands from sinusoidal endothelial cells and macrophages, which, in a paracrine manner, engage Frizzled and LDL-related protein-5/6 coreceptors on hepatocytes to stabilize -catenin inducing its nuclear translocation. Nuclear -catenin interacts with T-cell factor family of transcription factors to induce target genes including cyclin D1 for proliferation, and others for regulating hepatocyte function. Working in collaboration with other signaling pathways, Wnt/-catenin signaling contributes to the restoration process without any compromise of function at any stage. Also, stimulation of this pathway through innovative means induces liver regeneration when this process is exhausted or compromised and thus has applications in the treatment of end-stage liver disease and in the field of liver transplantation. Thus, Wnt/-catenin signaling pathway is highly relevant in the discipline of hepatic regenerative medicine.</p>","PeriodicalId":12502,"journal":{"name":"Gene expression","volume":" ","pages":"189-199"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8201651/pdf/GE-20-189.pdf","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene expression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3727/105221621X16111780348794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 12
Abstract
The liver is uniquely bestowed with an ability to regenerate following a surgical or toxicant insult. One of the most researched models to demonstrate the regenerative potential of this organ is the partial hepatectomy model, where two thirds of the liver is surgically resected. The remnant liver replenishes the lost mass within 1014 days in mice. The distinctive ability of the liver to regenerate has allowed living donor and split liver transplantation. One signaling pathway shown to be activated during the process of regeneration to contribute toward the mass and functional recovery of the liver is the Wnt/-catenin pathway. Very early after any insult to the liver, the cellmolecule circuitry of the Wnt/-catenin pathway is set into motion with the release of specific Wnt ligands from sinusoidal endothelial cells and macrophages, which, in a paracrine manner, engage Frizzled and LDL-related protein-5/6 coreceptors on hepatocytes to stabilize -catenin inducing its nuclear translocation. Nuclear -catenin interacts with T-cell factor family of transcription factors to induce target genes including cyclin D1 for proliferation, and others for regulating hepatocyte function. Working in collaboration with other signaling pathways, Wnt/-catenin signaling contributes to the restoration process without any compromise of function at any stage. Also, stimulation of this pathway through innovative means induces liver regeneration when this process is exhausted or compromised and thus has applications in the treatment of end-stage liver disease and in the field of liver transplantation. Thus, Wnt/-catenin signaling pathway is highly relevant in the discipline of hepatic regenerative medicine.
期刊介绍:
Gene Expression, The Journal of Liver Research will publish articles in all aspects of hepatology. Hepatology, as a research discipline, has seen unprecedented growth especially in the cellular and molecular mechanisms of hepatic health and disease, which continues to have a major impact on understanding liver development, stem cells, carcinogenesis, tissue engineering, injury, repair, regeneration, immunology, metabolism, fibrosis, and transplantation. Continued research and improved understanding in these areas will have a meaningful impact on liver disease prevention, diagnosis, and treatment. The existing journal Gene Expression has expanded its focus to become Gene Expression, The Journal of Liver Research to meet this growing demand. In its revised and expanded scope, the journal will publish high-impact original articles, reviews, short but complete articles, and special articles (editorials, commentaries, opinions) on all aspects of hepatology, making it a unique and invaluable resource for readers interested in this field. The expanded team, led by an Editor-in-Chief who is uniquely qualified and a renowned expert, along with a dynamic and functional editorial board, is determined to make this a premier journal in the field of hepatology.