K J Hodder, F Coghe, G Kechagiadakis, R J Chalaturnyk
{"title":"Using 3D printing to fabricate realistic test projectiles for natural fragmentation from buried charges.","authors":"K J Hodder, F Coghe, G Kechagiadakis, R J Chalaturnyk","doi":"10.1007/s43939-020-00004-6","DOIUrl":null,"url":null,"abstract":"<p><p>Buried charges such as improvised explosive devices continue to be one of the most lethal and hidden threats service members face. On detonation, ground debris near the blast area is accelerated towards service members as secondary fragmentation, consisting of sand, gravel and rocks. In order to mitigate injury, protective equipment can be worn, yet it is difficult to gather accurate data for engineering decisions when the standard test uses a fragment simulating projectile made from metal. It is difficult to test secondary fragmentation from ground debris due to the natural heterogeneity and variance of the material. A methodical and reproducible method of testing fragmentation damage from ground debris was developed to study and improve protective equipment against natural secondary fragmentation. We present herein the novel process of 3D-printing ballistic projectiles from silica sand, followed by launching with an air canon. Outlined within are the successes, challenges and proposed implementations of the technology. The 3D-printed sand projectiles achieved speeds over 170 m/s, resulting in measurable damage to single Kevlar sheets. Other flight parameters such as yaw and rotation were captured, resulting in observations about design and shape of the projectiles. It was found that one design performed better in terms of velocity, rotation and impact. The technology has the potential to disrupt the protective equipment sector by providing a controlled means of assessing natural fragmentation damage.</p>","PeriodicalId":34625,"journal":{"name":"Discover Materials","volume":"1 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s43939-020-00004-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43939-020-00004-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Buried charges such as improvised explosive devices continue to be one of the most lethal and hidden threats service members face. On detonation, ground debris near the blast area is accelerated towards service members as secondary fragmentation, consisting of sand, gravel and rocks. In order to mitigate injury, protective equipment can be worn, yet it is difficult to gather accurate data for engineering decisions when the standard test uses a fragment simulating projectile made from metal. It is difficult to test secondary fragmentation from ground debris due to the natural heterogeneity and variance of the material. A methodical and reproducible method of testing fragmentation damage from ground debris was developed to study and improve protective equipment against natural secondary fragmentation. We present herein the novel process of 3D-printing ballistic projectiles from silica sand, followed by launching with an air canon. Outlined within are the successes, challenges and proposed implementations of the technology. The 3D-printed sand projectiles achieved speeds over 170 m/s, resulting in measurable damage to single Kevlar sheets. Other flight parameters such as yaw and rotation were captured, resulting in observations about design and shape of the projectiles. It was found that one design performed better in terms of velocity, rotation and impact. The technology has the potential to disrupt the protective equipment sector by providing a controlled means of assessing natural fragmentation damage.
期刊介绍:
Discover Materials is part of the Discover journal series committed to providing a streamlined submission process, rapid review and publication, and a high level of author service at every stage. It is a broad, open access journal publishing research from across all fields of materials research.
Discover Materials covers all areas where materials are activators for innovation and disruption, providing cutting-edge research findings to researchers, academicians, students, and engineers. It considers the whole value chain, ranging from fundamental and applied research to the synthesis, characterisation, modelling and application of materials.
Moreover, we especially welcome papers connected to so-called ‘green materials’, which offer unique properties including natural abundance, low toxicity, economically affordable and versatility in terms of physical and chemical properties. They are the activators of an eco-sustainable economy serving all innovation sectors. Indeed, they can be applied in numerous scientific and technological applications including energy, electronics, building, construction and infrastructure, materials science and engineering applications and pollution management and technology. For instance, biomass-based materials can be developed as a source for biodiesel and bioethanol production, and transformed into advanced functionalized materials for applications such as the transformation of chitin into chitosan which can be further used for biomedicine, biomaterials and tissue engineering applications. Green materials for electronics are also a key vector concerning the integration of novel devices on conformable, flexible substrates with free-of-form surfaces for innovative product development. We also welcome new developments grounded on Artificial Intelligence to model, design and simulate materials and to gain new insights into materials by discovering new patterns and relations in the data.