Ørnulf Jan Rødseth, Lars Andreas Lien Wennersberg, Håvard Nordahl
{"title":"Towards approval of autonomous ship systems by their operational envelope.","authors":"Ørnulf Jan Rødseth, Lars Andreas Lien Wennersberg, Håvard Nordahl","doi":"10.1007/s00773-021-00815-z","DOIUrl":null,"url":null,"abstract":"<p><p>Current guidelines for approval of autonomous ship systems are focused on the ships' concrete operations and their geographic area. This is a natural consequence of the link between geography and the navigational complexity, but moving the ship to a new area or changing owners may require a costly re-approval. The automotive industry has introduced the Operational Design Domain (ODD) that can be used as a basis for approval. However, the ODD does not include the human control responsibilities, while most autonomous ship systems are expected to be dependent on sharing control responsibilities between humans and automation. We propose the definition of an operational envelope for autonomous ship systems that include the sharing of responsibilities between human and automation, and that is general enough to allow approval of autonomous ship systems in all geographic areas and operations that falls within the envelope. We also show how the operational envelope can be defined using a system modelling language, such as the unified modelling language (UML).</p>","PeriodicalId":16334,"journal":{"name":"Journal of Marine Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00773-021-00815-z","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00773-021-00815-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 20
Abstract
Current guidelines for approval of autonomous ship systems are focused on the ships' concrete operations and their geographic area. This is a natural consequence of the link between geography and the navigational complexity, but moving the ship to a new area or changing owners may require a costly re-approval. The automotive industry has introduced the Operational Design Domain (ODD) that can be used as a basis for approval. However, the ODD does not include the human control responsibilities, while most autonomous ship systems are expected to be dependent on sharing control responsibilities between humans and automation. We propose the definition of an operational envelope for autonomous ship systems that include the sharing of responsibilities between human and automation, and that is general enough to allow approval of autonomous ship systems in all geographic areas and operations that falls within the envelope. We also show how the operational envelope can be defined using a system modelling language, such as the unified modelling language (UML).
期刊介绍:
The Journal of Marine Science and Technology (JMST), presently indexed in EI and SCI Expanded, publishes original, high-quality, peer-reviewed research papers on marine studies including engineering, pure and applied science, and technology. The full text of the published papers is also made accessible at the JMST website to allow a rapid circulation.