Abubakar M Ashir, Salisu Ibrahim, Mohammed Abdulghani, Abdullahi Abdu Ibrahim, Mohammed S Anwar
{"title":"Diabetic Retinopathy Detection Using Local Extrema Quantized Haralick Features with Long Short-Term Memory Network.","authors":"Abubakar M Ashir, Salisu Ibrahim, Mohammed Abdulghani, Abdullahi Abdu Ibrahim, Mohammed S Anwar","doi":"10.1155/2021/6618666","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy is one of the leading diseases affecting eyes. Lack of early detection and treatment can lead to total blindness of the diseased eyes. Recently, numerous researchers have attempted producing automatic diabetic retinopathy detection techniques to supplement diagnosis and early treatment of diabetic retinopathy symptoms. In this manuscript, a new approach has been proposed. The proposed approach utilizes the feature extracted from the fundus image using a local extrema information with quantized Haralick features. The quantized features encode not only the textural Haralick features but also exploit the multiresolution information of numerous symptoms in diabetic retinopathy. Long Short-Term Memory network together with local extrema pattern provides a probabilistic approach to analyze each segment of the image with higher precision which helps to suppress false positive occurrences. The proposed approach analyzes the retina vasculature and hard-exudate symptoms of diabetic retinopathy on two different public datasets. The experimental results evaluated using performance matrices such as specificity, accuracy, and sensitivity reveal promising indices. Similarly, comparison with the related state-of-the-art researches highlights the validity of the proposed method. The proposed approach performs better than most of the researches used for comparison.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8068542/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6618666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic retinopathy is one of the leading diseases affecting eyes. Lack of early detection and treatment can lead to total blindness of the diseased eyes. Recently, numerous researchers have attempted producing automatic diabetic retinopathy detection techniques to supplement diagnosis and early treatment of diabetic retinopathy symptoms. In this manuscript, a new approach has been proposed. The proposed approach utilizes the feature extracted from the fundus image using a local extrema information with quantized Haralick features. The quantized features encode not only the textural Haralick features but also exploit the multiresolution information of numerous symptoms in diabetic retinopathy. Long Short-Term Memory network together with local extrema pattern provides a probabilistic approach to analyze each segment of the image with higher precision which helps to suppress false positive occurrences. The proposed approach analyzes the retina vasculature and hard-exudate symptoms of diabetic retinopathy on two different public datasets. The experimental results evaluated using performance matrices such as specificity, accuracy, and sensitivity reveal promising indices. Similarly, comparison with the related state-of-the-art researches highlights the validity of the proposed method. The proposed approach performs better than most of the researches used for comparison.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics