Introduction to engineering the biosynthesis of fungal natural products

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Central Science Pub Date : 2023-01-09 DOI:10.1039/D2NP90047E
Russell J. Cox and Tobias A. M. Gulder
{"title":"Introduction to engineering the biosynthesis of fungal natural products","authors":"Russell J. Cox and Tobias A. M. Gulder","doi":"10.1039/D2NP90047E","DOIUrl":null,"url":null,"abstract":"<p >Filamentous fungi are highly diverse eukaryotes that inhabit all known ecosystems on earth. Estimates suggest that more than 2 × 10<small><sup>6</sup></small> species are likely to exist, and analyses of typical fungal genomes suggest they harbour around 50 biosynthetic gene clusters on average. The biosynthetic potential of these organisms is thus vast. Fungi produce all the main classes of secondary metabolites, and numerous hybrid compounds. Many are highly useful in medicine such as the ‘classic’ special metabolites penicillins, cephalosporins, statins and mycophenolic acid, and new antimicrobial agents such as the pleuromutilins and enfumafungins that overcome specific patterns of resistance. Fungi differentiated from bacteria more than a billion years ago, so there has been plenty of time for uniquely fungal biosynthetic systems to evolve.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/np/d2np90047e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Filamentous fungi are highly diverse eukaryotes that inhabit all known ecosystems on earth. Estimates suggest that more than 2 × 106 species are likely to exist, and analyses of typical fungal genomes suggest they harbour around 50 biosynthetic gene clusters on average. The biosynthetic potential of these organisms is thus vast. Fungi produce all the main classes of secondary metabolites, and numerous hybrid compounds. Many are highly useful in medicine such as the ‘classic’ special metabolites penicillins, cephalosporins, statins and mycophenolic acid, and new antimicrobial agents such as the pleuromutilins and enfumafungins that overcome specific patterns of resistance. Fungi differentiated from bacteria more than a billion years ago, so there has been plenty of time for uniquely fungal biosynthetic systems to evolve.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
真菌天然产物的生物合成工程导论
丝状真菌是高度多样化的真核生物,栖息在地球上所有已知的生态系统中。据估计,可能存在超过2x106种真菌,对典型真菌基因组的分析表明,它们平均含有约50个生物合成基因簇。这些生物的生物合成潜力是如此巨大。真菌产生所有主要种类的次生代谢物和许多杂交化合物。许多药物在医学上非常有用,例如“经典的”特殊代谢物青霉素、头孢菌素、他汀类药物和霉酚酸,以及新的抗微生物药物,如克服特定耐药性模式的胸膜多素和恩富富宁。真菌在10亿多年前就从细菌中分化出来了,所以有足够的时间来进化独特的真菌生物合成系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
期刊最新文献
Corrigendum to "Probiotic bacterial adsorption coupled with CRISPR/Cas12a system for mercury (II) ions detection" [Biosens. Bioelectron. 263 (2024) 116627]. Retraction notice to "A comprehensive study on transparent conducting oxides in compact microbial fuel cells: Integrated spectroscopic and electrochemical analyses for monitoring biofilm growth" [Biosens. Bioelectron. 250 (2024) 116067]. The value of electrochemical ratiometry in immunosensing: A systematic study. Conductive single enzyme nanocomposites prepared by in-situ growth of nanoscale polyaniline for high performance enzymatic bioelectrode. A skin-mountable flexible biosensor based on Cu-MOF/PEDOT composites for sweat ascorbic acid monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1