{"title":"Cross-evaluation of social mining for classification of depressed online personas.","authors":"Alina Trifan, José Luis Oliveira","doi":"10.1515/jib-2020-0051","DOIUrl":null,"url":null,"abstract":"<p><p>With the continuous increase in the use of social networks, social mining is steadily becoming a powerful component of digital phenotyping. In this paper we explore social mining for the classification of self-diagnosed depressed users of Reddit as social network. We conduct a cross evaluation study based on two public datasets in order to understand the impact of transfer learning when the data source is virtually the same. We further complement these results with an experiment of transfer learning in post-partum depression classification, using a corpus we have collected for the matter. Our findings show that transfer learning in social mining might still be at an early stage in computational research and we thoroughly discuss its implications.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jib-2020-0051","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2020-0051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
With the continuous increase in the use of social networks, social mining is steadily becoming a powerful component of digital phenotyping. In this paper we explore social mining for the classification of self-diagnosed depressed users of Reddit as social network. We conduct a cross evaluation study based on two public datasets in order to understand the impact of transfer learning when the data source is virtually the same. We further complement these results with an experiment of transfer learning in post-partum depression classification, using a corpus we have collected for the matter. Our findings show that transfer learning in social mining might still be at an early stage in computational research and we thoroughly discuss its implications.