{"title":"Real-Time Estimation of Direction of Arrival of Speech Source Using Three Microphones.","authors":"Serkan Tokgöz, Anton Kovalyov, Issa Panahi","doi":"10.1109/sips50750.2020.9195217","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we present a real-time noise-robust direction of arrival (DOA) estimation technique using only the three built-in microphones of the modern Android-based smartphone. The proposed method eliminates the 'front-back' ambiguity caused by the symmetry of the two microphones reported previously and improves the performance of DOA estimation in noisy speech environments. Our method enhances the spatial awareness of hearing-impaired users by displaying the precise DOA angle of speech source on their smartphone screen. For increased efficiency, noise-robustness, and accuracy of the proposed DOA estimation method, a spectral pre-filtering technique and a Voice Activity Detector (VAD) based post-filtering are used along with a modified generalized cross-correlation (GCC) technique. Real recorded and simulated data under realistic noisy conditions are used in the evaluations of the proposed algorithm. Real-time implementation of the proposed system is carried out on an Android-based smartphone without any additional hardware or external microphone attachments. Experimental results show the performance of the proposed method versus those without pre or post-filtering under three different noisy conditions with 0dB to 10dB signal to noise ratios (SNRs).</p>","PeriodicalId":93225,"journal":{"name":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","volume":"2020 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/sips50750.2020.9195217","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Workshop on Signal Processing Systems (2007-2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sips50750.2020.9195217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this paper, we present a real-time noise-robust direction of arrival (DOA) estimation technique using only the three built-in microphones of the modern Android-based smartphone. The proposed method eliminates the 'front-back' ambiguity caused by the symmetry of the two microphones reported previously and improves the performance of DOA estimation in noisy speech environments. Our method enhances the spatial awareness of hearing-impaired users by displaying the precise DOA angle of speech source on their smartphone screen. For increased efficiency, noise-robustness, and accuracy of the proposed DOA estimation method, a spectral pre-filtering technique and a Voice Activity Detector (VAD) based post-filtering are used along with a modified generalized cross-correlation (GCC) technique. Real recorded and simulated data under realistic noisy conditions are used in the evaluations of the proposed algorithm. Real-time implementation of the proposed system is carried out on an Android-based smartphone without any additional hardware or external microphone attachments. Experimental results show the performance of the proposed method versus those without pre or post-filtering under three different noisy conditions with 0dB to 10dB signal to noise ratios (SNRs).