M. P. Silva, C. G. Rodrigues, W. A. Varanda, R. A. Nogueira
{"title":"Memory in Ion Channel Kinetics","authors":"M. P. Silva, C. G. Rodrigues, W. A. Varanda, R. A. Nogueira","doi":"10.1007/s10441-021-09415-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ion channels are transport proteins present in the lipid bilayers of biological membranes. They are involved in many physiological processes, such as the generation of nerve impulses, hormonal secretion, and heartbeat. Conformational changes in the ion channel-forming protein allow the opening or closing of pores to control the ionic flux through the cell membranes. The opening and closing of the ion channel have been classically treated as a random kinetic process, known as a Markov process. Here the time the channel remains in a given state is assumed to be independent of the condition it had in the previous state. More recently, however, several studies have shown that this process is not random but a deterministic one, where both the open and closed dwell-times and the ionic current flowing through the channel are history-dependent. This property is called long memory or long-range correlation. However, there is still much controversy regarding how this memory originates, which region of the channel is responsible for this property, and which models could best reproduce the memory effect. In this article, we provide a review of what is, where it is, its possible origin, and the mathematical methods used to analyze the long-term memory present in the kinetic process of ion channels.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10441-021-09415-1","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-021-09415-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7
Abstract
Ion channels are transport proteins present in the lipid bilayers of biological membranes. They are involved in many physiological processes, such as the generation of nerve impulses, hormonal secretion, and heartbeat. Conformational changes in the ion channel-forming protein allow the opening or closing of pores to control the ionic flux through the cell membranes. The opening and closing of the ion channel have been classically treated as a random kinetic process, known as a Markov process. Here the time the channel remains in a given state is assumed to be independent of the condition it had in the previous state. More recently, however, several studies have shown that this process is not random but a deterministic one, where both the open and closed dwell-times and the ionic current flowing through the channel are history-dependent. This property is called long memory or long-range correlation. However, there is still much controversy regarding how this memory originates, which region of the channel is responsible for this property, and which models could best reproduce the memory effect. In this article, we provide a review of what is, where it is, its possible origin, and the mathematical methods used to analyze the long-term memory present in the kinetic process of ion channels.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.