Simple parameters to solve a complex issue: predicting response to checkpoint inhibitor therapy in lung cancer.

IF 0.7 Q4 RESPIRATORY SYSTEM Lung Cancer Management Pub Date : 2020-11-23 DOI:10.2217/lmt-2020-0024
James Newman, Isabel Preeshagul, Nina Kohn, Craig Devoe, Nagashree Seetharamu
{"title":"Simple parameters to solve a complex issue: predicting response to checkpoint inhibitor therapy in lung cancer.","authors":"James Newman,&nbsp;Isabel Preeshagul,&nbsp;Nina Kohn,&nbsp;Craig Devoe,&nbsp;Nagashree Seetharamu","doi":"10.2217/lmt-2020-0024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Noninvasive biomarkers predicting immune checkpoint inhibitor (ICI) response are urgently needed. We evaluated the predictive value of pretreatment neutrophil-to-lymphocyte ratio (NLR), smoking history, smoking intensity, BMI and programmed death ligand 1 (PD-L1) expression in non-small-cell lung cancer (NSCLC) patients treated with ICIs.</p><p><strong>Materials & methods: </strong>Single-center retrospective study included 137 patients from July 2015 to February 2018. Outcomes included 3-month disease control rate, progression-free survival, and overall survival. Predictive value of biomarkers was assessed independently and in a multivariable model.</p><p><strong>Results: </strong>NLR was associated with all outcomes. Smoking history was predictive of progression-free survival and smoking intensity was predictive of disease control rate. BMI and PD-L1 were not associated with any outcome. High BMI was associated with low NLR.</p><p><strong>Conclusion: </strong>Simple clinical biomarkers can predict response to ICIs. A score incorporating both clinical factors and established tissue/serum biomarkers may be useful in identifying NSCLC patients who would benefit from ICIs.</p>","PeriodicalId":43551,"journal":{"name":"Lung Cancer Management","volume":"10 2","pages":"LMT44"},"PeriodicalIF":0.7000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b2/ee/lmt-10-44.PMC8162145.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lung Cancer Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/lmt-2020-0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 3

Abstract

Background: Noninvasive biomarkers predicting immune checkpoint inhibitor (ICI) response are urgently needed. We evaluated the predictive value of pretreatment neutrophil-to-lymphocyte ratio (NLR), smoking history, smoking intensity, BMI and programmed death ligand 1 (PD-L1) expression in non-small-cell lung cancer (NSCLC) patients treated with ICIs.

Materials & methods: Single-center retrospective study included 137 patients from July 2015 to February 2018. Outcomes included 3-month disease control rate, progression-free survival, and overall survival. Predictive value of biomarkers was assessed independently and in a multivariable model.

Results: NLR was associated with all outcomes. Smoking history was predictive of progression-free survival and smoking intensity was predictive of disease control rate. BMI and PD-L1 were not associated with any outcome. High BMI was associated with low NLR.

Conclusion: Simple clinical biomarkers can predict response to ICIs. A score incorporating both clinical factors and established tissue/serum biomarkers may be useful in identifying NSCLC patients who would benefit from ICIs.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
简单的参数解决一个复杂的问题:预测肺癌对检查点抑制剂治疗的反应。
背景:迫切需要预测免疫检查点抑制剂(ICI)反应的无创生物标志物。我们评估了预处理中性粒细胞与淋巴细胞比率(NLR)、吸烟史、吸烟强度、BMI和程序性死亡配体1 (PD-L1)表达在非小细胞肺癌(NSCLC)患者接受ICIs治疗中的预测价值。材料与方法:2015年7月至2018年2月,单中心回顾性研究纳入137例患者。结果包括3个月疾病控制率、无进展生存期和总生存期。在多变量模型中独立评估生物标志物的预测价值。结果:NLR与所有结果相关。吸烟史可预测无进展生存,吸烟强度可预测疾病控制率。BMI和PD-L1与任何结果无关。高BMI与低NLR相关。结论:简单的临床生物标志物可预测ICIs的疗效。结合临床因素和已建立的组织/血清生物标志物的评分可能有助于识别将受益于ICIs的非小细胞肺癌患者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lung Cancer Management
Lung Cancer Management RESPIRATORY SYSTEM-
CiteScore
2.30
自引率
0.00%
发文量
1
期刊最新文献
Leveraging machine learning to predict de novo skin malignancy following lung transplantation. Cost of managing brain metastases in ALK-positive advanced NSCLC patients receiving first-line ALK TKIs in China. Oncogenic ALK fusion in rare subtype of small intestine metastasis from occult lung cancer. Pooled analysis of oral vinorelbine as single agents in patients with advanced NSCLC. The association between blood-based HYAL2 methylation and early-stage lung cancer: a case-control study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1