What's in a Summary? Laying the Groundwork for Advances in Hospital-Course Summarization.

Griffin Adams, Emily Alsentzer, Mert Ketenci, Jason Zucker, Noémie Elhadad
{"title":"What's in a Summary? Laying the Groundwork for Advances in Hospital-Course Summarization.","authors":"Griffin Adams, Emily Alsentzer, Mert Ketenci, Jason Zucker, Noémie Elhadad","doi":"10.18653/v1/2021.naacl-main.382","DOIUrl":null,"url":null,"abstract":"<p><p>Summarization of clinical narratives is a long-standing research problem. Here, we introduce the task of hospital-course summarization. Given the documentation authored throughout a patient's hospitalization, generate a paragraph that tells the story of the patient admission. We construct an English, text-to-text dataset of 109,000 hospitalizations (2M source notes) and their corresponding summary proxy: the clinician-authored \"Brief Hospital Course\" paragraph written as part of a discharge note. Exploratory analyses reveal that the BHC paragraphs are highly abstractive with some long extracted fragments; are concise yet comprehensive; differ in style and content organization from the source notes; exhibit minimal lexical cohesion; and represent silver-standard references. Our analysis identifies multiple implications for modeling this complex, multi-document summarization task.</p>","PeriodicalId":74542,"journal":{"name":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","volume":"2021 ","pages":"4794-4811"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225248/pdf/nihms-1705151.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the conference. Association for Computational Linguistics. North American Chapter. Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.naacl-main.382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summarization of clinical narratives is a long-standing research problem. Here, we introduce the task of hospital-course summarization. Given the documentation authored throughout a patient's hospitalization, generate a paragraph that tells the story of the patient admission. We construct an English, text-to-text dataset of 109,000 hospitalizations (2M source notes) and their corresponding summary proxy: the clinician-authored "Brief Hospital Course" paragraph written as part of a discharge note. Exploratory analyses reveal that the BHC paragraphs are highly abstractive with some long extracted fragments; are concise yet comprehensive; differ in style and content organization from the source notes; exhibit minimal lexical cohesion; and represent silver-standard references. Our analysis identifies multiple implications for modeling this complex, multi-document summarization task.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
摘要有哪些内容?为医院课程总结的进步奠定基础。
临床叙述的总结是一个长期存在的研究问题。在此,我们介绍医院病程总结任务。给定病人住院期间撰写的文件,生成一个段落,讲述病人入院的故事。我们构建了一个英文文本到文本数据集,其中包含 109,000 个住院病例(200 万份原始病历)及其相应的摘要代理:临床医生撰写的 "简要住院病程 "段落,作为出院病历的一部分。探索性分析表明,"简要住院过程 "段落具有高度的抽象性,其中包含一些较长的提取片段;简洁而全面;在风格和内容组织方面与原始病历不同;表现出最低限度的词汇连贯性;并且代表了银标准参考文献。我们的分析为这一复杂的多文档摘要任务建模提供了多方面的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ODD: A Benchmark Dataset for the Natural Language Processing Based Opioid Related Aberrant Behavior Detection. Towards Reducing Diagnostic Errors with Interpretable Risk Prediction. ScAN: Suicide Attempt and Ideation Events Dataset. ScAN: Suicide Attempt and Ideation Events Dataset Translational NLP: A New Paradigm and General Principles for Natural Language Processing Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1