Md Tuhin Sheikh, Joseph G Ibrahim, Jonathan A Gelfond, Wei Sun, Ming-Hui Chen
{"title":"Joint modelling of longitudinal and survival data in the presence of competing risks with applications to prostate cancer data.","authors":"Md Tuhin Sheikh, Joseph G Ibrahim, Jonathan A Gelfond, Wei Sun, Ming-Hui Chen","doi":"10.1177/1471082X20944620","DOIUrl":null,"url":null,"abstract":"<p><p>This research is motivated from the data from a large Selenium and Vitamin E Cancer Prevention Trial (SELECT). The prostate specific antigens (PSAs) were collected longitudinally, and the survival endpoint was the time to low-grade cancer or the time to high-grade cancer (competing risks). In this article, the goal is to model the longitudinal PSA data and the time-to-prostate cancer (PC) due to low- or high-grade. We consider the low-grade and high-grade as two competing causes of developing PC. A joint model for simultaneously analysing longitudinal and time-to-event data in the presence of multiple causes of failure (or competing risk) is proposed within the Bayesian framework. The proposed model allows for handling the missing causes of failure in the SELECT data and implementing an efficient Markov chain Monte Carlo sampling algorithm to sample from the posterior distribution via a novel reparameterization technique. Bayesian criteria, ΔDIC<sub>Surv</sub>, and ΔWAIC<sub>Surv</sub>, are introduced to quantify the gain in fit in the survival sub-model due to the inclusion of longitudinal data. A simulation study is conducted to examine the empirical performance of the posterior estimates as well as ΔDIC<sub>Surv</sub> and ΔWAIC<sub>Surv</sub> and a detailed analysis of the SELECT data is also carried out to further demonstrate the proposed methodology.</p>","PeriodicalId":49476,"journal":{"name":"Statistical Modelling","volume":"21 1-2","pages":"72-94"},"PeriodicalIF":1.2000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225229/pdf/nihms-1634286.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1177/1471082X20944620","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This research is motivated from the data from a large Selenium and Vitamin E Cancer Prevention Trial (SELECT). The prostate specific antigens (PSAs) were collected longitudinally, and the survival endpoint was the time to low-grade cancer or the time to high-grade cancer (competing risks). In this article, the goal is to model the longitudinal PSA data and the time-to-prostate cancer (PC) due to low- or high-grade. We consider the low-grade and high-grade as two competing causes of developing PC. A joint model for simultaneously analysing longitudinal and time-to-event data in the presence of multiple causes of failure (or competing risk) is proposed within the Bayesian framework. The proposed model allows for handling the missing causes of failure in the SELECT data and implementing an efficient Markov chain Monte Carlo sampling algorithm to sample from the posterior distribution via a novel reparameterization technique. Bayesian criteria, ΔDICSurv, and ΔWAICSurv, are introduced to quantify the gain in fit in the survival sub-model due to the inclusion of longitudinal data. A simulation study is conducted to examine the empirical performance of the posterior estimates as well as ΔDICSurv and ΔWAICSurv and a detailed analysis of the SELECT data is also carried out to further demonstrate the proposed methodology.
期刊介绍:
The primary aim of the journal is to publish original and high-quality articles that recognize statistical modelling as the general framework for the application of statistical ideas. Submissions must reflect important developments, extensions, and applications in statistical modelling. The journal also encourages submissions that describe scientifically interesting, complex or novel statistical modelling aspects from a wide diversity of disciplines, and submissions that embrace the diversity of applied statistical modelling.