{"title":"Theoretical fractional formulation of a three-dimensional radio frequency ion trap (Paul-trap) for optimum mass separation.","authors":"Sarkhosh Seddighi Chaharborj, Shahriar Seddighi Chaharborj, Zahra Seddighi Chaharborj, Pei See Phang","doi":"10.1177/14690667211026790","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the dynamics of an ion confined in a Paul-trap supplied by a fractional periodic impulsional potential. The Cantor-type cylindrical coordinate method is a powerful tool to convert differential equations on Cantor sets from cantorian-coordinate systems to Cantor-type cylindrical coordinate systems. By applying this method to the classical Laplace equation, a fractional Laplace equation in the Cantor-type cylindrical coordinate is obtained. The fractional Laplace equation is solved in the Cantor-type cylindrical coordinate, then the ions is modelled and studied for confined ions inside a Paul-trap characterized by a fractional potential. In addition, the effect of the fractional parameter on the stability regions, ion trajectories, phase space, maximum trapping voltage, spacing between two signals and fractional resolution is investigated and discussed.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/14690667211026790","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667211026790","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the dynamics of an ion confined in a Paul-trap supplied by a fractional periodic impulsional potential. The Cantor-type cylindrical coordinate method is a powerful tool to convert differential equations on Cantor sets from cantorian-coordinate systems to Cantor-type cylindrical coordinate systems. By applying this method to the classical Laplace equation, a fractional Laplace equation in the Cantor-type cylindrical coordinate is obtained. The fractional Laplace equation is solved in the Cantor-type cylindrical coordinate, then the ions is modelled and studied for confined ions inside a Paul-trap characterized by a fractional potential. In addition, the effect of the fractional parameter on the stability regions, ion trajectories, phase space, maximum trapping voltage, spacing between two signals and fractional resolution is investigated and discussed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.