Levenshtein Distance, Sequence Comparison and Biological Database Search

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2020-03-21 DOI:10.1109/TIT.2020.2996543
Bonnie Berger;Michael S. Waterman;Yun William Yu
{"title":"Levenshtein Distance, Sequence Comparison and Biological Database Search","authors":"Bonnie Berger;Michael S. Waterman;Yun William Yu","doi":"10.1109/TIT.2020.2996543","DOIUrl":null,"url":null,"abstract":"Levenshtein edit distance has played a central role-both past and present-in sequence alignment in particular and biological database similarity search in general. We start our review with a history of dynamic programming algorithms for computing Levenshtein distance and sequence alignments. Following, we describe how those algorithms led to heuristics employed in the most widely used software in bioinformatics, BLAST, a program to search DNA and protein databases for evolutionarily relevant similarities. More recently, the advent of modern genomic sequencing and the volume of data it generates has resulted in a return to the problem of local alignment. We conclude with how the mathematical formulation of Levenshtein distance as a metric made possible additional optimizations to similarity search in biological contexts. These modern optimizations are built around the low metric entropy and fractional dimensionality of biological databases, enabling orders of magnitude acceleration of biological similarity search.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"67 6","pages":"3287-3294"},"PeriodicalIF":2.2000,"publicationDate":"2020-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TIT.2020.2996543","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9097943/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 39

Abstract

Levenshtein edit distance has played a central role-both past and present-in sequence alignment in particular and biological database similarity search in general. We start our review with a history of dynamic programming algorithms for computing Levenshtein distance and sequence alignments. Following, we describe how those algorithms led to heuristics employed in the most widely used software in bioinformatics, BLAST, a program to search DNA and protein databases for evolutionarily relevant similarities. More recently, the advent of modern genomic sequencing and the volume of data it generates has resulted in a return to the problem of local alignment. We conclude with how the mathematical formulation of Levenshtein distance as a metric made possible additional optimizations to similarity search in biological contexts. These modern optimizations are built around the low metric entropy and fractional dimensionality of biological databases, enabling orders of magnitude acceleration of biological similarity search.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Levenstein距离、序列比对与生物数据库检索
Levenstein编辑距离在过去和现在的序列比对和生物数据库相似性搜索中都发挥着核心作用。我们从计算Levenstein距离和序列比对的动态规划算法的历史开始回顾。接下来,我们描述了这些算法是如何导致启发式算法在生物信息学中最广泛使用的软件BLAST中使用的,BLAST是一个搜索DNA和蛋白质数据库以寻找进化相关相似性的程序。最近,现代基因组测序的出现及其产生的大量数据导致了局部比对问题的回归。最后,我们总结了Levenstein距离作为度量的数学公式如何使生物环境中的相似性搜索有可能得到额外的优化。这些现代优化是围绕生物数据库的低度量熵和分数维构建的,实现了生物相似性搜索的数量级加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1