Jaidaa Mekky, Osama El-Kholy, Eman Hamdy, Akram Fawzy
{"title":"Rapid eye movement (REM) sleep microarchitecture is altered in patients with wake-up ischemic stroke: A polysomnographic study","authors":"Jaidaa Mekky, Osama El-Kholy, Eman Hamdy, Akram Fawzy","doi":"10.1016/j.nbscr.2021.100069","DOIUrl":null,"url":null,"abstract":"<div><p>It is well established that certain alteration of sleep disorders occur in patients with wake-up stroke (WUS) such as sleep disordered breathing, periodic limb movements and sleep duration. However, the data are lacking about the microarchitecture of different sleep stages among those patients.</p></div><div><h3>Aim of work</h3><p>To compare the polysomnographic microarchitecture of rapid eye movement (REM) sleep between WUS and daytime stroke (DTS).</p></div><div><h3>Methods</h3><p>A cross-sectional polysomnographic study was conducted on 20 patients with WUS and 20 patients with DTS, with analysis of REM sleep microarchitecture in specific.</p></div><div><h3>Results</h3><p>Patients with WUS had significantly shorter REM stage (11.76 ± 5.48% in WUS versus 16.59 ± 5.33% in DTS, P = 0.008), longer early morning REM was (25.70 ± 13.13 min in WUS versus 4.15 ± 4.69 min in DTS, P=<0.001), higher apnea-hypopnea index (AHI) during REM (6.29 ± 10.18 in WUS versus 1.10 ± 4.57 in DTS, P = 0.009), and lower mean Oxygen saturation during REM (92.70 ± 3.63 WUS versus 95.45 ± 1.35 DTS, P = 0.012). The OR of early morning REM duration was 1.8 (CI 1.099–3.130, p = 0.021) for WUS.</p></div><div><h3>Conclusion</h3><p>The microarchitecture of REM sleep is disrupted in patients with wake-up stroke.</p></div>","PeriodicalId":37827,"journal":{"name":"Neurobiology of Sleep and Circadian Rhythms","volume":"11 ","pages":"Article 100069"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.nbscr.2021.100069","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Sleep and Circadian Rhythms","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451994421000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1
Abstract
It is well established that certain alteration of sleep disorders occur in patients with wake-up stroke (WUS) such as sleep disordered breathing, periodic limb movements and sleep duration. However, the data are lacking about the microarchitecture of different sleep stages among those patients.
Aim of work
To compare the polysomnographic microarchitecture of rapid eye movement (REM) sleep between WUS and daytime stroke (DTS).
Methods
A cross-sectional polysomnographic study was conducted on 20 patients with WUS and 20 patients with DTS, with analysis of REM sleep microarchitecture in specific.
Results
Patients with WUS had significantly shorter REM stage (11.76 ± 5.48% in WUS versus 16.59 ± 5.33% in DTS, P = 0.008), longer early morning REM was (25.70 ± 13.13 min in WUS versus 4.15 ± 4.69 min in DTS, P=<0.001), higher apnea-hypopnea index (AHI) during REM (6.29 ± 10.18 in WUS versus 1.10 ± 4.57 in DTS, P = 0.009), and lower mean Oxygen saturation during REM (92.70 ± 3.63 WUS versus 95.45 ± 1.35 DTS, P = 0.012). The OR of early morning REM duration was 1.8 (CI 1.099–3.130, p = 0.021) for WUS.
Conclusion
The microarchitecture of REM sleep is disrupted in patients with wake-up stroke.
期刊介绍:
Neurobiology of Sleep and Circadian Rhythms is a multidisciplinary journal for the publication of original research and review articles on basic and translational research into sleep and circadian rhythms. The journal focuses on topics covering the mechanisms of sleep/wake and circadian regulation from molecular to systems level, and on the functional consequences of sleep and circadian disruption. A key aim of the journal is the translation of basic research findings to understand and treat sleep and circadian disorders. Topics include, but are not limited to: Basic and translational research, Molecular mechanisms, Genetics and epigenetics, Inflammation and immunology, Memory and learning, Neurological and neurodegenerative diseases, Neuropsychopharmacology and neuroendocrinology, Behavioral sleep and circadian disorders, Shiftwork, Social jetlag.