A Supervised Image Registration Approach for Late Gadolinium Enhanced MRI and Cine Cardiac MRI Using Convolutional Neural Networks.

Roshan Reddy Upendra, Richard Simon, Cristian A Linte
{"title":"A Supervised Image Registration Approach for Late Gadolinium Enhanced MRI and Cine Cardiac MRI Using Convolutional Neural Networks.","authors":"Roshan Reddy Upendra, Richard Simon, Cristian A Linte","doi":"10.1007/978-3-030-52791-4_17","DOIUrl":null,"url":null,"abstract":"<p><p>Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) imaging is the current gold standard for assessing myocardium viability for patients diagnosed with myocardial infarction, myocarditis or cardiomyopathy. This imaging method enables the identification and quantification of myocardial tissue regions that appear hyper-enhanced. However, the delineation of the myocardium is hampered by the reduced contrast between the myocardium and the left ventricle (LV) blood-pool due to the gadolinium-based contrast agent. The balanced-Steady State Free Precession (bSSFP) cine CMR imaging provides high resolution images with superior contrast between the myocardium and the LV blood-pool. Hence, the registration of the LGE CMR images and the bSSFP cine CMR images is a vital step for accurate localization and quantification of the compromised myocardial tissue. Here, we propose a Spatial Transformer Network (STN) inspired convolutional neural network (CNN) architecture to perform supervised registration of bSSFP cine CMR and LGE CMR images. We evaluate our proposed method on the 2019 Multi-Sequence Cardiac Magnetic Resonance Segmentation Challenge (MS-CMRSeg) dataset and use several evaluation metrics, including the center-to-center LV and right ventricle (RV) blood-pool distance, and the contour-to-contour blood-pool and myocardium distance between the LGE and bSSFP CMR images. Specifically, we showed that our registration method reduced the bSSFP to LGE LV blood-pool center distance from 3.28mm before registration to 2.27mm post registration and RV blood-pool center distance from 4.35mm before registration to 2.52mm post registration. We also show that the average surface distance (ASD) between bSSFP and LGE is reduced from 2.53mm to 2.09mm, 1.78mm to 1.40mm and 2.42mm to 1.73mm for LV blood-pool, LV myocardium and RV blood-pool, respectively.</p>","PeriodicalId":93335,"journal":{"name":"Medical image understanding and analysis : 24th Annual Conference, MIUA 2020, Oxford, UK, July 15-17, 2020, Proceedings. Medical Image Understanding and Analysis (Conference) (24th : 2020 : Online)","volume":"1248 ","pages":"208-220"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8285264/pdf/nihms-1705222.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image understanding and analysis : 24th Annual Conference, MIUA 2020, Oxford, UK, July 15-17, 2020, Proceedings. Medical Image Understanding and Analysis (Conference) (24th : 2020 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-52791-4_17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/7/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) imaging is the current gold standard for assessing myocardium viability for patients diagnosed with myocardial infarction, myocarditis or cardiomyopathy. This imaging method enables the identification and quantification of myocardial tissue regions that appear hyper-enhanced. However, the delineation of the myocardium is hampered by the reduced contrast between the myocardium and the left ventricle (LV) blood-pool due to the gadolinium-based contrast agent. The balanced-Steady State Free Precession (bSSFP) cine CMR imaging provides high resolution images with superior contrast between the myocardium and the LV blood-pool. Hence, the registration of the LGE CMR images and the bSSFP cine CMR images is a vital step for accurate localization and quantification of the compromised myocardial tissue. Here, we propose a Spatial Transformer Network (STN) inspired convolutional neural network (CNN) architecture to perform supervised registration of bSSFP cine CMR and LGE CMR images. We evaluate our proposed method on the 2019 Multi-Sequence Cardiac Magnetic Resonance Segmentation Challenge (MS-CMRSeg) dataset and use several evaluation metrics, including the center-to-center LV and right ventricle (RV) blood-pool distance, and the contour-to-contour blood-pool and myocardium distance between the LGE and bSSFP CMR images. Specifically, we showed that our registration method reduced the bSSFP to LGE LV blood-pool center distance from 3.28mm before registration to 2.27mm post registration and RV blood-pool center distance from 4.35mm before registration to 2.52mm post registration. We also show that the average surface distance (ASD) between bSSFP and LGE is reduced from 2.53mm to 2.09mm, 1.78mm to 1.40mm and 2.42mm to 1.73mm for LV blood-pool, LV myocardium and RV blood-pool, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络的钆增强核磁共振成像(Gadolinium Enhanced MRI)后期和心脏核磁共振成像(Cine Cardiac MRI)监督图像注册方法
晚期钆增强(LGE)心脏磁共振(CMR)成像是目前评估心肌梗死、心肌炎或心肌病患者心肌活力的金标准。这种成像方法可以识别和量化出现高增强的心肌组织区域。然而,由于钆基造影剂导致心肌与左心室血池之间的对比度降低,心肌的划分受到影响。平衡稳态自由前冲(bSSFP) cine CMR 成像可提供高分辨率图像,心肌和左心室血池之间的对比度更高。因此,LGE CMR 图像和 bSSFP cine CMR 图像的配准是准确定位和量化受损心肌组织的关键步骤。在此,我们提出了一种受空间变换器网络(STN)启发的卷积神经网络(CNN)架构,对 bSSFP cine CMR 和 LGE CMR 图像进行监督配准。我们在 2019 年多序列心脏磁共振分割挑战赛(MS-CMRSeg)数据集上评估了我们提出的方法,并使用了多个评估指标,包括 LGE 和 bSSFP CMR 图像之间中心到中心的左心室和右心室(RV)血池距离,以及轮廓到轮廓的血池和心肌距离。具体而言,我们的配准方法将 bSSFP 与 LGE 左心室血池中心距离从配准前的 3.28 毫米缩小到配准后的 2.27 毫米,将右心室血池中心距离从配准前的 4.35 毫米缩小到配准后的 2.52 毫米。我们还显示,bSSFP 与 LGE 之间的平均表面距离(ASD)分别从 2.53 毫米、1.78 毫米和 2.42 毫米缩短到 2.09 毫米、1.78 毫米和 1.40 毫米,其中 LV 血池、LV 心肌和 RV 血池的平均表面距离(ASD)分别从 2.53 毫米、1.78 毫米和 1.40 毫米缩短到 1.73 毫米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SCorP: Statistics-Informed Dense Correspondence Prediction Directly from Unsegmented Medical Images. M-VAAL: Multimodal Variational Adversarial Active Learning for Downstream Medical Image Analysis Tasks. Medical Image Understanding and Analysis: 26th Annual Conference, MIUA 2022, Cambridge, UK, July 27–29, 2022, Proceedings Medical Image Understanding and Analysis: 25th Annual Conference, MIUA 2021, Oxford, United Kingdom, July 12–14, 2021, Proceedings A Supervised Image Registration Approach for Late Gadolinium Enhanced MRI and Cine Cardiac MRI Using Convolutional Neural Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1