Generalized Score Matching for Non-Negative Data.

Shiqing Yu, Mathias Drton, Ali Shojaie
{"title":"Generalized Score Matching for Non-Negative Data.","authors":"Shiqing Yu,&nbsp;Mathias Drton,&nbsp;Ali Shojaie","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A common challenge in estimating parameters of probability density functions is the intractability of the normalizing constant. While in such cases maximum likelihood estimation may be implemented using numerical integration, the approach becomes computationally intensive. The score matching method of Hyvärinen (2005) avoids direct calculation of the normalizing constant and yields closed-form estimates for exponential families of continuous distributions over <math> <mrow><msup><mi>R</mi> <mi>m</mi></msup> </mrow> </math> . Hyvärinen (2007) extended the approach to distributions supported on the non-negative orthant, <math> <mrow><msubsup><mi>R</mi> <mo>+</mo> <mi>m</mi></msubsup> </mrow> </math> . In this paper, we give a generalized form of score matching for non-negative data that improves estimation efficiency. As an example, we consider a general class of pairwise interaction models. Addressing an overlooked inexistence problem, we generalize the regularized score matching method of Lin et al. (2016) and improve its theoretical guarantees for non-negative Gaussian graphical models.</p>","PeriodicalId":314696,"journal":{"name":"Journal of machine learning research : JMLR","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8291733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of machine learning research : JMLR","FirstCategoryId":"94","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A common challenge in estimating parameters of probability density functions is the intractability of the normalizing constant. While in such cases maximum likelihood estimation may be implemented using numerical integration, the approach becomes computationally intensive. The score matching method of Hyvärinen (2005) avoids direct calculation of the normalizing constant and yields closed-form estimates for exponential families of continuous distributions over R m . Hyvärinen (2007) extended the approach to distributions supported on the non-negative orthant, R + m . In this paper, we give a generalized form of score matching for non-negative data that improves estimation efficiency. As an example, we consider a general class of pairwise interaction models. Addressing an overlooked inexistence problem, we generalize the regularized score matching method of Lin et al. (2016) and improve its theoretical guarantees for non-negative Gaussian graphical models.

Abstract Image

Abstract Image

Abstract Image

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非负数据的广义分数匹配。
估计概率密度函数参数的一个常见挑战是归一化常数的难处。虽然在这种情况下,最大似然估计可以使用数值积分来实现,但这种方法的计算量很大。Hyvärinen(2005)的得分匹配方法避免了直接计算归一化常数,并对R m上的连续分布的指数族产生了封闭形式的估计。Hyvärinen(2007)将该方法扩展到非负正交R + m上支持的分布。本文给出了一种非负数据的分数匹配的广义形式,提高了估计效率。作为一个例子,我们考虑一类一般的两两交互模型。为了解决一个被忽视的不存在问题,我们推广了Lin等人(2016)的正则化分数匹配方法,并改进了其对非负高斯图模型的理论保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hoeffding's inequality for general Markov chains with its applications to statistical learning. Estimation and Inference for High Dimensional Generalized Linear Models: A Splitting and Smoothing Approach. Integrative Generalized Convex Clustering Optimization and Feature Selection for Mixed Multi-View Data. Learning and Planning for Time-Varying MDPs Using Maximum Likelihood Estimation. Bayesian time-aligned factor analysis of paired multivariate time series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1